Flashing at Bottom of Exterior Walls

Please Register or Login to Provide Feedback.

Climate

The chief climate factor is exposure to rainfall. Buildings in regions with more rainfall are subject to increased incidence of water damage.

Drainable wall assemblies are recommended in all exposure regions. Rain-screen wall systems are considered best-practice upgrades in all exposure regions to ensure the long-term durability of building assemblies, but are especially recommended in High and Extreme exposure regions, as shown on the map below (BSC 2004).

Rain exposure region map

Figure 1 - Average Annual Precipitation Map REF Icon

Please Register or Login to Provide Feedback.

Description

Flashing at the bottom of exterior walls needs to be integrated into a continuous drainage plane on the exterior wall. The goal is to create a wall system that can manage the water that will inevitably get behind any cladding system.

Principles of a Water Managed Wall System

Water leaking through exterior cladding assemblies is a common cause of construction defects and call-backs.

wall damage caused by leak due to improper flashing

Figure 1 - Common callback: This damage was caused by a leak at the base of wall cladding that did not include proper through-wall flashing Reference

Typically, these wall leaks are caused by missing flashings, or poorly executed flashing details at the following:

  • roof-to-wall intersections
  • penetrations
  • windows and doors
  • transitions between different claddings when more than one cladding is used the bottoms of exterior walls where cladding systems interface with the foundation.

The key to eliminating costly leaks is more than just applying a piece of flashing. You need to create a functional wall assembly that:

  • Deflects water away from sheathing, framing and floor-to-foundation intersections.
  • Drains water as fast and freely as possible to prevent water from being trapped and absorbed by building components.
  • Dries. Select building materials that allow the wall to dry out when it gets wet, and avoid materials that have the ability to trap moisture (BSC 2007).

Continuous Drainage Plane

Building wraps and flashings must be properly integrated with one another to create a continuous drainage plane. Note in the illustration below that the flashing at the bottom of the wall is just one of a number of wall details that work in concert with each other to ensure water drains down and away from the building (Straube 2007).

 Proper installation of flashing for drainage

Figure 2 - Continuous drainage plane: From the roof to the foundation, wall flashings must work as a part of a system to divert water Reference

Installation Sequence

A continuous drainage plane is typically created using a weather-resistive barrier (WRB), such as building paper or housewrap. To work effectively, the weather-resistive barrier must be properly "shingled." Shingling is a term that describes the installation sequence that will allow water to drain away from the wall.

Proper shingling of drainage plane materials

Figure 3 - Proper shingling of drainage plane materials: The layers of the drainage plane must be installed in the correct sequence, from the bottom working upwards, so water drains down and away from the building Reference

The illustration above shows how the layers of the weather-resistive barrier must overlap to divert water out and away from the structure. In the sequence of construction, the flashing would need to be installed first. The bottom layer of building paper would be installed next, overlapping the vertical leg of the flashing. The top layer of building paper would be installed last (BSC 2007).

Water managed wall assemblies

There are two approaches to a water managed wall assembly that employs thru-wall flashing at the bottom of a wall:

  1. A drainable wall system
  2. A rain screen assembly.

Drainable wall assemblies integrate a weather-resistive barrier and flashing to properly drain water away from building components. The specific materials and installation methods depend on the cladding used on the building. (EPA 2011)

Wood or Fiber-Cement Siding

  1. Base flashing. Start by installing a metal or vinyl base flashing first. This piece should be applied directly to the wall sheathing using roofing nails. When more than one length is needed to span across the bottom of a wall, overlap pieces at least 8 inches. The flashing must include a drip-edge to direct any water that runs down the drainage plane away from the bottom of the wall (EPA 2012).
  2. Weather-resistive barrier. Next, a weather-resistive barrier, such as building paper or housewrap, is applied to the wall, overlapping the base flashing. The example pictured below is a "drain wrap," which has a texture to it to facilitate drainage after the siding is applied over it. You don't need a drain wrap to create a drainable wall assembly, but the texture drains water faster than conventional wraps. Two types are pictured in the illustration below: One with a wrinkled surface, and one with deposits of plastic that create a space between the wrap and the cladding  (Smegal and Lstiburek 2012).
  3. 8-inch minimum between siding and grade. To prevent splash back from the roofline soaking the base of the wall, the bottom edge of the base flashing should be at least 8 inches above grade. This is a design detail that must be worked out before the foundation is poured. The grade must be sloped on all sides of the building so the water continues to drain away from the building. A 5% slope is recommended. This is a 5-inch drop per 100 feet, or about 5/8-inch per foot  (Straube 2007).

Wood/fiber cement drainable wall assembly

Figure 4 -  Wood/fiber cement drainable wall assembly Reference

Stucco Cladding

Stucco is porous and will always crack. This is true even when installed perfectly. It is brittle, and cracking is in its nature. However, while these shortfalls will lead to water getting through the surface, the issues can be managed. The key is to create a good drainage plane behind the stucco that drains to a weep system, allowing the water to flow away from the building.

  1. Self-adhesive flashing. When the weep screed attaches to plywood, OSB or another wood-based framing material, a self-adhesive flashing membrane is needed first to protect the wood from water draining through the perforated screed (EPA 2012).
  2. Weep screed. Next, a weep screed is installed. The bottom edge of this piece of flashing should extend onto the foundation. The size of the screed will depend on the stucco thickness, with traditional three-coat stucco requiring a deeper profile than the screed needed for a one coat system. On an exterior insulation and finish (EIF) system, this flashing piece is called a weep channel, and it holds the bottom edge of the foam. It is perforated and works in principle just like a weep screed (EPA 2012).
  3. Two-layer weather resistive barrier. Most building codes require two-layers of building paper (or another type of weather-resistive barrier) beneath stucco. The first layer (installed against the sheathing) serves as the drainage plane and protects the wall sheathing from water. The second layer works as a bond breaker. Wet stucco tends to adhere to building paper and house wrap. Water absorbed by the stucco will wick right through this bond breaking layer, but will drain down the wall between the two layers. Both layers should overlap the top edge of the weep screed (Lstiburek 2003).
  4. Lath. On wood framing, wire lath must be installed, with the long dimension running perpendicular to the wall studs. Best practice calls for securing lath with furring nails, which place the lath in the center of the scratch coat (Note: Using paper-backed lath over a single-layer of house wrap or building paper will work as well as a two-layer weather resistive barrier, and will save time) (DeKorne 2006).

Stucco drainable wall assembly

Figure 5 - Stucco drainable wall assembly Reference

Rain screen wall systems provide an air space between the wrap and the cladding. The air space typically is of ¼-inch or greater. This air space helps reduce water problems in four ways.

  1. The larger space can create faster, unobstructed drainage.
  2. The space creates a capillary break to prevent water from wicking into building materials.
  3. The space allows for additional air movement to facilitate drying.
  4. The space can provide pressure moderation and help reduce pressure differentials that can help draw water into openings in the cladding.

Wood or Fiber-Cement Siding

Best practice with any wood or fiber-cement siding calls for building a rain screen assembly. This technique uses all the same water management details of a drainable wall assembly, but adds an air space behind the siding. This space creates a capillary break, which prevents water that wicks through the siding from being absorbed into the water-resistive barrier. The air space also allows air to flow freely behind the siding, which increases the wall's ability to dry.

  1. Base flashing. The wall system begins with flashing at the bottom of the wall, which collects water that drains down the wall and kicks it out at the base. Metal or PVC flashing can be used. It should have a drip edge that hangs below the sill plate, with the bottom edge at least 8 inches above grade (EPA 2012).
  2. Weather-resistive barrier. After the flashing, a weather-resistive barrier (WRB), such as building paper or a house wrap is installed to create a drainage plane. The first course of the WRB needs to overlap the vertical leg of the base flashing. Subsequent courses of the WRB must overlap the course below (EPA 2012).
  3. Furring. The air space is created by installing furring strips (vertical pieces of wood or plastic) spaced every 16-24 inches over the weather-resistive barrier. These need to be at least 3/8 inches thick. They can be ripped out of plywood or purchased precut from a lumberyard, and nailed every 12-16 inches with 5d galvanized nails (Hanley-Wood 2007).
  4. Insect screen. To block the entry of insects, install nylon screening. Tuck the screening behind the furring strips, wrap it around the ends of the strips, and pin it in place with the siding starter strip. Nylon is recommended, but other types of screening can be used, as long as it is an open mesh that will not block the free flow of air. Metal will rust, and is not recommended (EPA 2012).

Wood/fiber-cement rain-screen assembly

Figure 6 - Wood/fiber-cement rain-screen assembly Reference

Brick Veneer

Properly detailed brick veneer functions like a rain screen. The key is making sure there is an unobstructed path for water to flow out at the bottom of the wall. This path starts with the airspace behind the brick. Water freely flows down through this space, gets collected by through-wall flashing at the bottom of the wall, and drains out through weep holes.

brick veneer rain screen assembly 

Figure 7 - Brick veneer rain-screen assembly Reference

  1. Through-wall flashing. The first step to detailing the base of a brick-veneer wall is to install a through-wall flashing, which extends down the sheathing and out across the support ledge (often a concrete extension of the foundation, but may also be formed with angle-iron).

    Through-wall flashing can be made with metal, but is usually formed with a flexible rubber-based membrane, such as the one shown in the photo below (Hanley-Wood 2007).

    Flexible rubber through-wall flashing

    Figure 8 - Flexible rubber through-wall flashing Reference

  2. Weather-resistive barrier. Next, a weather-resistive barrier, such as building paper, must be applied over the framed wall assembly. The courses of the weather-resistive barrier must be applied "shingle fashion," with the lowest course applied first, overlapping the vertical leg of the through-wall flashing. The upper courses are installed afterwards, overlapping each lower course (EPA 2011).
  3. Air space. The brick must be installed with a 1-inch air space behind it to allow water that seeps into the brick to freely drain. The illustration above shows a mortar mesh installed in the air space at the base of wall. This helps to stop mortar droppings from clogging the weep holes (EPA 2011).
  4. Weep holes. Water that collects on the through-wall flashing must be able to drain out through weep holes, which are formed by an "open" head joint (as shown in the illustration above), or with rope inserted into the  mortar joint (as shown in the photo below). In this illustration the open head joints have been filled with an open-weave mesh. This is a good idea for keeping mud wasps from building their nests in the weep holes, and to prevent other obstructions from blocking the free flow of water (EPA 2012).

    Weep holes: Rope inserted in the head joist between bricks will allow water to weep out of the base of the wall assembly

    Figure 9 - Weep holes: Rope inserted in the head joist between bricks will allow water to weep out of the base of the wall assembly Reference

Ensuring Success

For detailing all exteriors, builders and subcontractors should follow a protocol for managing water, using a resource such as the ENERGY STAR Qualified Homes Water Management System Builder Checklist.

water-managed wall assembly

The project supervisor should inspect for a flashing at the base of walls and at transitions between sidings before the siding is installed. This inspection should confirm that the weather-resistive barrier (WRB) overlaps the base flashings (EPA 2011).

Success with stucco

For wood-framed structures, best practice calls for hanging the drywall before the lath and scratch coat are applied. The weight of drywall will stress wood framing, causing early settlement cracks, which can be acute if the drywall is hung before the scratch coat has had a chance to cure. Whether or not this can be achieved, however, will depend on a building schedule that may be difficult to implement (DeKorne 2006).

Scope

Water Managed Above Grade Wall Assembly

Note: Each of three graphics below show specific details for flashing at the bottom of exterior walls.

Flashing at bottom of exterior walls with weep holes included for masonry veneer and weep screed for stucco cladding systems, or equivalent drainage system.

flashing at bottom of exterior wall A

  1. Install flashing at the bottom of all exterior walls or an equivalent drainage system.

Flashing at bottom of exterior walls with weep holes included for masonry veneer and weep screed for stucco cladding systems, or equivalent drainage system.

Flashing at bottom of exterior wall B

  1. If installing masonry veneer, clean cavities of weep hole locations prior to installation.
  2. If installing masonry veneer, install weep holes at all flashing locations such as the base of walls, above all window and door lintels, and above shelf angles.
  3. If installing masonry veneer, ENERGY STAR recommends following the manufacturer’s specifications when installing weep hole materials.

Flashing at bottom of exterior walls with weep holes included for masonry veneer and weep screed for stucco cladding systems, or equivalent drainage system.

flashing at bottom of exterior wall C

  1. If installing stucco, install a weep screed at the base of all exterior walls at the height above grade specified by the local building code.
  2. If installing stucco, install the water-resistant barrier over the weep screed.
  3. If installing stucco, install the lathe and stucco to the first bend in the weep screed.

ENERGY STAR Notes for Existing Homes:

These Items not required for existing structural masonry walls (e.g., in a home undergoing a gut rehabilitation). Note this exemption does not extend to existing wall assemblies with masonry veneers.

Training

Right and Wrong Images

Presentations

  1. Author(s): Steve Easley & Associates
    Organization(s): Steve Easley & Associates
  2. Author(s): Steve Easley & Associates
    Organization(s): Steve Easley & Associates
  3. Author(s): Steve Easley & Associates
    Organization(s): Steve Easley & Associates
  4. Author(s): Steve Easley & Associates
    Organization(s): Steve Easley & Associates
  5. Presentation: Water-Managed Vinyl Siding
    (2 MB)
    Author(s): Steve Easley & Associates
    Organization(s): Steve Easley & Associates

CAD Images

None Available

Compliance

ENERGY STAR Version 3, (Rev. 07)

Water Management Checklist, Water-Managed Wall Assembly. Flashing at bottom of exterior walls with weep holes included for masonry veneer and weep screed for stucco cladding systems, or equivalent drainage system.

These Items not required for existing structural masonry walls (e.g., in a home undergoing a gut rehabilitation). Note this exemption does not extend to existing wall assemblies with masonry veneers.

DOE Challenge Home

Exhibit 1: Mandatory Requirements. Certified under ENERGY STAR Qualified Homes Version 3.

2009 IRC

Section R703.6.2.1 Weep screeds. A minimum 0.019-inch (No. 26 galvanized sheet gage), corrosion-resistant weep screed or plastic weep screed, with a minimum vertical attachment flange of 31/2 inches must be provided at or below the foundation plate line on exterior stud walls per ASTM C 926.  It must be placed a minimum of 4 inches above the earth or 2 inches above paved areas and must allow trapped water to drain to the exterior. The weather-resistant barrier must lap the attachment flange, and the exterior lath must cover and end on the weep screed attachment flange. Section R703.7.5 Flashing. Flashing must be located beneath the first course of masonry above finished ground level above the foundation wall or slab and at other points of support, including structural floors, shelf angles and lintels when masonry veneers are designed per Section R703.7. Section R703.7.6 Weepholes. Weepholes must be provided in the outside wythe of masonry walls at maximum spacing of 33 inches on center and must be located directly above the flashing.*

2012 IRC

Section R703.6.2.1 Weep screeds. A minimum 0.019-inch (No. 26 galvanized sheet gage), corrosion-resistant weep screed or plastic weep screed, with a minimum vertical attachment flange of 31/2 inches must be provided at or below the foundation plate line on exterior stud walls per ASTM C 926.  It must be placed a minimum of 4 inches above the earth or 2 inches above paved areas and must allow trapped water to drain to the exterior. The weather-resistant barrier must lap the attachment flange, and the exterior lath must cover and end on the weep screed attachment flange. Section R703.7.5 Flashing. Flashing must be located beneath the first course of masonry above finished ground level above the foundation wall or slab and at other points of support, including structural floors, shelf angles and lintels when masonry veneers are designed per Section R703.7. Section R703.7.6 Weepholes. Weepholes must be provided in the outside wythe of masonry walls at maximum spacing of 33 inches on center and must be located directly above the flashing.*

*Due to copyright restrictions, exact code text is not provided.  For specific code text, refer to the applicable code.

More Info.

Case Studies

None Available

References and Resources*

  1. Author(s): DOE
    Organization(s): DOE
    Publication Date: June 2013

    Standard requirements for DOE's Challenge Home national program certification.

  2. Author(s): EPA
    Organization(s): EPA
    Publication Date: June 2013

    Standard document containing the rater checklists and national program requirements for ENERGY STAR Certified Homes, Version 3 (Rev. 7).

  3. Author(s): BSC
    Organization(s): BSC, NREL
    Publication Date: April 2004

    Report with an overall HTWII introduction and four sections explaining the four most important hygro-thermal regions: Hot-Humid, Mixed-Humid, Cold, and Hot-Dry/Mixed-Dry.

  4. Author(s): Straube
    Organization(s): BSC
    Publication Date: October 2006

    Document covering basic moisture control principles in the design of above-grade building enclosures; driving rain as a moisture load on walls; a classification system of the various rain control strategies available for walls; and good design practises for walls.

  5. Author(s): DeKorne
    Organization(s): DeKorne
    Publication Date: May 2006

    Information sheet describing correct application of stucco.

  6. Author(s): EPA
    Organization(s): EPA
    Publication Date: February 2013

    Website providing technical guidance to help home builders and their subcontractors, architects, and other housing professionals understand the intent and implementation of the specification requirements of the IAQ labeling program.

  7. Author(s): Hanley-Wood
    Organization(s): Journal of Light Construction
  8. Author(s): Lstiburek
    Organization(s): BSC
    Publication Date: March 2003

    Document outlining a well-detailed drainage plane and flashings.

  9. Author(s): BSC
    Organization(s): BSC
    Publication Date: November 2007

    Document providing guidance on water management concepts and applications.

  10. Author(s): Smegal, Lstiburek
    Organization(s): BSC
    Publication Date: April 2012

    Report summarizing current research, summarizes issues that have been experienced with current best practices, and recommends ways in which the best practices can be improved for water managing sheathings.

  11. Author(s): EPA
    Organization(s): EPA
    Publication Date: February 2011

    Guide describing details that serve as a visual reference for each of the line items in the Water Management System Builder Checklist.

Last Updated: 08/15/2013

Mobile Field Kit

The Building America Field Kit allows you to save items to your profile for review or use on-site.