Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 26 - 50 of 91

Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract

This project will develop and demonstrate innovative pre-commercial, cost-effective retrofit packages for cooling and ventilating single family homes. Energy savings, occupant behavior and indoor air quality (IAQ) will be measured for two specific retrofit packages that each includes three innovative technologies: (1) building envelope sealing, (2) two variants of smart mechanical ventilation that include pre-cooling strategies, and (3) compressor-free evaporative air-conditioning. Furthermore, barriers and opportunities towards adoption of such retrofits will be identified through stakeholder interviews.

Project Abstract

This project will develop and demonstrate innovative pre-commercial, cost-effective retrofit packages for cooling and ventilating single family homes. Energy savings, occupant behavior and indoor air quality (IAQ) will be measured for two specific retrofit packages that each includes three innovative technologies: (1) building envelope sealing, (2) two variants of smart mechanical ventilation that include pre-cooling strategies, and (3) compressor-free evaporative air-conditioning. Furthermore, barriers and opportunities towards adoption of such retrofits will be identified through stakeholder interviews.

Project Abstract
This research investigates how community-scale solar water heating can reduce energy consumption (both natural gas and electricity) and greenhouse gas emissions for communities pursuing highly efficient advanced energy systems that reduce or eliminate reliance on fossil fuels, and the cost effectiveness in doing so.
Project Abstract
This project will develop integrated plug load control strategies appropriate for different spaces within multiple types of commercial buildings. The project will implement a flexible energy management system (FEMS) to demonstrate the integrated control strategies for plug loads at pilot sites, including installation of smart power outlets and integration of various plug load control strategies with building energy management and/or lighting control systems. The project is designed to demonstrate and measure the degree of effectiveness of the flexible control strategies developed for integrally managing operation of plug loads to achieve energy efficiency and demand reductions.
Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will provide a detailed market segmentation and baseline energy demand assessment of the gaming market, including development of measurement and benchmarking protocols for gaming software and hardware. Top-selling gaming PCs and games are then cross-benchmarked and retrofitted to achieve maximum energy savings beyond what commercialized products currently can attain.
Project Abstract
This project will provide a detailed market segmentation and baseline energy demand assessment of the gaming market, including development of measurement and benchmarking protocols for gaming software and hardware. Top-selling gaming PCs and games are then cross-benchmarked and retrofitted to achieve maximum energy savings beyond what commercialized products currently can attain.
Project Abstract
This project will develop, validate and quantify energy impacts of a new generation of high performance facade systems and provide the design and management toolkits that will enable the building industry to meet challenging energy performance goals leading to net zero buildings by 2030. Building envelope technologies can be integrated into a cost-effective system that reduces energy-use associated with HVAC and lighting while improving occupant comfort. Technology development activities include highly insulating (Hi-R) windows, energy recovery-based envelope ventilation systems, and dynamic daylight redirecting systems. Supporting tools, data, and design methods will also be developed to enable widespread, reliable, cost-effective deployment throughout California.
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This project will demonstrate the installation of innovative technologies to retrofit an existing, low-income, mixed-use multi-unit building in a dense urban setting to become zero net energy (ZNE). Innovative strategies include a rapid new technology discovery and assessment approach, to ensure the most current emerging technologies are incorporated, as well as innovative measurement and verification. These approaches and other ZNE design process innovations will be packaged into an advanced ZNE design methodology for use in the demonstration project as well as broad dissemination to the design and innovation community. Numerous technical innovations and pre-commercial technologies are planned for inclusion including dynamic chromatic glass, heat recovery ventilators, variable refrigerant flow, occupancy based plug-load management, advanced light emitting diode lighting systems and a combined photovoltaic-thermal system.
Project Abstract
This project will demonstrate the installation of innovative technologies to retrofit an existing, low-income, mixed-use multi-unit building in a dense urban setting to become zero net energy (ZNE). Innovative strategies include a rapid new technology discovery and assessment approach, to ensure the most current emerging technologies are incorporated, as well as innovative measurement and verification. These approaches and other ZNE design process innovations will be packaged into an advanced ZNE design methodology for use in the demonstration project as well as broad dissemination to the design and innovation community. Numerous technical innovations and pre-commercial technologies are planned for inclusion including dynamic chromatic glass, heat recovery ventilators, variable refrigerant flow, occupancy based plug-load management, advanced light emitting diode lighting systems and a combined photovoltaic-thermal system.
Project Abstract
This agreement develops a new tool that integrates moisture and thermal analysis. By integrating these two properties the optimal strategies can be determined for improving envelope design for new construction and retrofit applications.This agreement provides building professionals with a user-friendly engineering software tool at no cost.
Project Abstract
This project will develop and evaluate cost-effective packages of pre-commercial integrated energy efficiency measures and controls to achieve zero net energy (ZNE) performance for multi-story small commercial offices in San Francisco and Southern California. The packages will target a minimum of 50 percent energy savings when compared to standard building energy use. The packages of energy efficiency measures will be analyzed at Lawrence Berkeley National Laboratory's FLEXLAB, an advanced facility for testing whole-building integrated systems, to develop and validate solutions under varied climate and use conditions. The simulation models will be validated through results from FLEXLAB testing and a 3-story whole-building demonstration pilot located in San Francisco. Data on energy, occupant comfort, and occupant behavior will be analyzed and packaged into best practices to be replicated elsewhere in the State.
Project Abstract
This project will develop and evaluate cost-effective packages of pre-commercial integrated energy efficiency measures and controls to achieve zero net energy (ZNE) performance for multi-story small commercial offices in San Francisco and Southern California. The packages will target a minimum of 50 percent energy savings when compared to standard building energy use. The packages of energy efficiency measures will be analyzed at Lawrence Berkeley National Laboratory's FLEXLAB, an advanced facility for testing whole-building integrated systems, to develop and validate solutions under varied climate and use conditions. The simulation models will be validated through results from FLEXLAB testing and a 3-story whole-building demonstration pilot located in San Francisco. Data on energy, occupant comfort, and occupant behavior will be analyzed and packaged into best practices to be replicated elsewhere in the State.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop a low cost smart thermostat unit that will have simple user interface. Though the test sites are low-income and senior housing, this technology could be adapted to other residential sectors. The smart thermostat will understand user preferences and manage indoor conditions to optimize energy use without requiring internet connectivity. HVAC energy use can be traced to three factors: losses in the ducting system, substandard equipment efficiency and occupant settings. Low income households are mostly renters which makes changes to the duct system or HVAC unit not feasible. By providing automatically optimized thermostat settings this project will determine if smart thermostats are a cost effective method to address HVAC energy use in the low-income and senior housing sectors.
Project Abstract

The project team is demonstrating and validating new retrofit package solutions from laboratory pre-testing through field demonstrations in existing government-owned commercial buildings. The solution sets, dubbed "INTER", are comprised of shading products from Rollease Acmeda and lighting and plug load systems and integrated controls, including HVAC systems, from Enlighted. The technologies can be combined and customized to suit a variety of building types and spaces, resulting in an estimated whole building energy reduction of 20 to 32 percent. Beginning in the Los Angeles basin, the team is leveraging existing market connections to increase and accelerate market adoption of these retrofit solution sets to maximize the potential energy and carbon savings, first in the region and ultimately, throughout California.