Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 50 of 51

Project Abstract

This project deploys APMD technology over a large sample size, at approximately 55,000 computer workstations at several Community Colleges, and focuses on integrating the technology with facility operations to ensure that they meet the needs of the sites and staff. Key features of the proposed project include outreach and individual education programs to California Community College Districts, evaluation of sites for participation in the project, purchase and installation of APMDs at approved sites, measurement and verification (M&V) activities both pre- and post-APMD implementation at the selected demonstration sites, and stakeholder satisfaction information from demonstration facilities staff and APMD end-users through interviews and surveys.

Project Abstract
The project will focus on the performance of different attic assemblies and their associated heating, ventilating and air conditioning (HVAC) systems. Field measurements of attic and HVAC system performance will be conducted in two new high performance homes in California with sealed and insulated attics. One home will be built to be about 30 percent better than Title 24 and the other will be a ZNE home. The attic insulation approach will be a new lower-cost approach using blown insulation that does not use expensive spray-foam. The results of the measurements will be used directly to provide technical support for potential changes to Title 24 and provide information to contractors and builders on sealed and insulated attic performance and alternative approaches.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
Three different attic designs will be refined, tested, evaluated, and demonstrated in new home construction. The team will recommend the best of these approaches to home builders addressing cost-effectiveness and energy-efficiency. The baseline for comparison will be current energy efficiency code practices for attic construction involving ventilated, uninsulated attics containing code compliant ducts. The team will evaluate the new design approaches analytically at the start of the project. Researchers will assess approaches that include methods to produce sealed, insulated attics, as well as, standard vented attics, both of which have been demonstrated and are in limited use in the market today but currently add considerable cost to builders. The team will employ new and novel installation methods and materials that have the potential for energy savings on par with ducts in the conditioned space, but at a cost similar to current practice.
Project Abstract
This project will develop and demonstrate an approach to scale residential retrofits for disadvantaged communities that will focus on customer-centric solutions. This project will develop and demonstrate an innovative approach, focusing on energy efficient retrofit packages that are non-intrusive to occupants and have the potential of reducing energy use by 30 to 40 percent.
Project Abstract
This project will demonstrate how a large number of small electric loads, each impacted by and tuned to individual customer preferences can provide load management for both utilities and the California Independent System Operator (California ISO). The recipient will work with an extensive spectrum of leading product providers covering all major distributed energy resources (DERs), such as Nest (thermostats), ThinkEco (plug loads), Honda, BMW (auto), EGuana (smart Inverter) and Ice Energy (Thermal Storage). A variety of price signals will be tested for Time-of-Use customers such as Critical Peak Pricing and Demand Rate. The project will use deep analytics to evaluate individual customer preferences for demand management using microdata from devices and aggregate the responses to meet grid needs at different distribution and transmission levels.
Project Abstract
This project will demonstrate cost-competitive ZNE design strategies that combine occupant needs with technology solutions to create new pathways for residential ZNE communities. The project's goals are cost effectiveness for the customer, affordability, overcoming customer apprehension, establishing a track record of new technology for builders, enabling distribution grid integration, creating a planning process for ZNE communities, evaluating community solar and evaluating the impact of future changes to ZNE cost effectiveness. This project will also aim to understand the operation and energy use of the unregulated loads.
Project Abstract
This project will develop a next-generation residential space-conditioning system optimized for California climates. The advanced efficiency solutions integrated into the HVAC system will include: variable-capacity compressor and variable-speed fans using state-of-the-art inverter technology; integrated ventilation to harness fresh air for "free cooling;" intelligent dual-fuel technology to decrease energy cost and empower consumers to choose between electricity and natural gas; zonal control to prevent conditioning of unoccupied rooms; demand-response interactivity to grid flexibility and reliability; advanced fault detection and diagnostics to ensure proper installation, operation, and maintenance; and alternative refrigerants for improved operation and significant reductions in the potential for global warming. How the Project Lead
Project Abstract
This project will research DC and AC-DC hybrid systems in buildings and develop resource information, end-use templates, and building guidelines that could improve the ability to achieve zero net energy buildings. The feasibility, costs, benefits, market barriers, and customer and education needs will be assessed, including guidelines for residential and small commercial buildings.
Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract

This project will develop and demonstrate innovative pre-commercial, cost-effective retrofit packages for cooling and ventilating single family homes. Energy savings, occupant behavior and indoor air quality (IAQ) will be measured for two specific retrofit packages that each includes three innovative technologies: (1) building envelope sealing, (2) two variants of smart mechanical ventilation that include pre-cooling strategies, and (3) compressor-free evaporative air-conditioning. Furthermore, barriers and opportunities towards adoption of such retrofits will be identified through stakeholder interviews.

Project Abstract

This project will develop and demonstrate innovative pre-commercial, cost-effective retrofit packages for cooling and ventilating single family homes. Energy savings, occupant behavior and indoor air quality (IAQ) will be measured for two specific retrofit packages that each includes three innovative technologies: (1) building envelope sealing, (2) two variants of smart mechanical ventilation that include pre-cooling strategies, and (3) compressor-free evaporative air-conditioning. Furthermore, barriers and opportunities towards adoption of such retrofits will be identified through stakeholder interviews.

Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will provide a detailed market segmentation and baseline energy demand assessment of the gaming market, including development of measurement and benchmarking protocols for gaming software and hardware. Top-selling gaming PCs and games are then cross-benchmarked and retrofitted to achieve maximum energy savings beyond what commercialized products currently can attain.
Project Abstract
This project will develop, validate and quantify energy impacts of a new generation of high performance facade systems and provide the design and management toolkits that will enable the building industry to meet challenging energy performance goals leading to net zero buildings by 2030. Building envelope technologies can be integrated into a cost-effective system that reduces energy-use associated with HVAC and lighting while improving occupant comfort. Technology development activities include highly insulating (Hi-R) windows, energy recovery-based envelope ventilation systems, and dynamic daylight redirecting systems. Supporting tools, data, and design methods will also be developed to enable widespread, reliable, cost-effective deployment throughout California.
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This agreement develops a new tool that integrates moisture and thermal analysis. By integrating these two properties the optimal strategies can be determined for improving envelope design for new construction and retrofit applications.This agreement provides building professionals with a user-friendly engineering software tool at no cost.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop a low cost smart thermostat unit that will have simple user interface. Though the test sites are low-income and senior housing, this technology could be adapted to other residential sectors. The smart thermostat will understand user preferences and manage indoor conditions to optimize energy use without requiring internet connectivity. HVAC energy use can be traced to three factors: losses in the ducting system, substandard equipment efficiency and occupant settings. Low income households are mostly renters which makes changes to the duct system or HVAC unit not feasible. By providing automatically optimized thermostat settings this project will determine if smart thermostats are a cost effective method to address HVAC energy use in the low-income and senior housing sectors.
Project Abstract

The project team is demonstrating and validating new retrofit package solutions from laboratory pre-testing through field demonstrations in existing government-owned commercial buildings. The solution sets, dubbed "INTER", are comprised of shading products from Rollease Acmeda and lighting and plug load systems and integrated controls, including HVAC systems, from Enlighted. The technologies can be combined and customized to suit a variety of building types and spaces, resulting in an estimated whole building energy reduction of 20 to 32 percent. Beginning in the Los Angeles basin, the team is leveraging existing market connections to increase and accelerate market adoption of these retrofit solution sets to maximize the potential energy and carbon savings, first in the region and ultimately, throughout California.

Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
The project will implement lessons learned from previous high performance housing research and measure the results in two new houses built in partnership with Habitat for Humanity and homeowners. The houses will be built in a disadvantaged community in Stockton. Each house will include advanced architectural design features, high performance enclosures, advanced heating, ventilating and air conditioning systems, low-cost water heating systems and other advanced energy efficiency measures. One all-electric home and one mixed fuel (combined electric and natural gas) home will be built to demonstrate the respective costeffectiveness of each set of features. In addition to the measured results from actual occupancy, the project will develop a guide to affordable residential zero net energy design and construction, training curriculum, and new class offerings based on the project results for building practitioners.
Project Abstract
The goal of the project is to reduce the energy consumption of residential and commercial plug load devices, such as set-top boxes, TVs, computers and game consoles. The project will leverage mobile design practices, hardware components and energy management software kernels, and prove their effectiveness on virtual prototypes and reference designs of targeted plug load devices. Based on these findings, the recipient will develop, tune and deploy the design methodology guidelines for energy efficient plug load designs to the manufacturers of plug load devices and their hardware, software and tools suppliers. The recipient will also define and introduce a widely accepted industry standard through the Institute of Electrical and Electronics Engineers (IEEE) to support the newly developed unified design methodology and secure its long-term adoption and further evolution.
Project Abstract
The recipient will use EnergyPlus, a building energy modeling tool, to analyze the costeffectiveness of various electricity saving/generation measures for multifamily and commercial buildings in California. For each building type and climate zone, the results will include a cost-benefit analysis for each measure individually and for an optimized package of measures that reduces net electricity consumption to achieve as close to zero net energy as is cost-effectively possible.
Project Abstract
The recipient will use EnergyPlus, a building energy modeling tool, to analyze the costeffectiveness of various electricity saving/generation measures for multifamily and commercial buildings in California. For each building type and climate zone, the results will include a cost-benefit analysis for each measure individually and for an optimized package of measures that reduces net electricity consumption to achieve as close to zero net energy as is cost-effectively possible.
Project Abstract
The project will provide detailed cost effectiveness modeling of all electric zero net energy (ZNE) homes versus ZNE homes with gas-based heating. Evaluation will include costs of building integration, energy efficiency packages, installed equipment and lifetime investment costs such as energy costs, and infrastructure costs (natural gas pipeline and electricity distribution system). The project will provide both spatial and temporal analysis in providing cost effectiveness assessment in four California climate zones and provide cost evolution scenarios as a function of time, for example as the ZNE industry scales up and under various policy and energy cost assumptions. The analysis will provide policymakers with a better understanding of the costs and benefits of ZNE policy choices between today and future ZNE milestones (2020, 2030), and the trade-offs for all electric versus electric and gas households
Project Abstract
The project will provide detailed cost effectiveness modeling of all electric zero net energy (ZNE) homes versus ZNE homes with gas-based heating. Evaluation will include costs of building integration, energy efficiency packages, installed equipment and lifetime investment costs such as energy costs, and infrastructure costs (natural gas pipeline and electricity distribution system). The project will provide both spatial and temporal analysis in providing cost effectiveness assessment in four California climate zones and provide cost evolution scenarios as a function of time, for example as the ZNE industry scales up and under various policy and energy cost assumptions. The analysis will provide policymakers with a better understanding of the costs and benefits of ZNE policy choices between today and future ZNE milestones (2020, 2030), and the trade-offs for all electric versus electric and gas households
Project Abstract

This project will test an Integrated Building Control Package that maximizes energy efficiency for existing commercial buildings. The project will refine novel control algorithms that utilize shared device state and environmental data for lighting, fenestration and heating, ventilating and air conditioning (HVAC) systems. Sharing and considering data from multiple device types will further improve overall, sustained, system performance and operation. Control algorithms will prioritize lighting or heating/cooling savings based on climate and building design. HVAC system management will leverage passive ventilatio

Project Abstract

This project will test an Integrated Building Control Package that maximizes energy efficiency for existing commercial buildings. The project will refine novel control algorithms that utilize shared device state and environmental data for lighting, fenestration and heating, ventilating and air conditioning (HVAC) systems. Sharing and considering data from multiple device types will further improve overall, sustained, system performance and operation. Control algorithms will prioritize lighting or heating/cooling savings based on climate and building design. HVAC system management will leverage passive ventilatio

Project Abstract
This project will research methods to reduce home idle loads by utilizing smart meter analytics, an engaging smart phone app, a new online crowd-sourced database of miscellaneous electric loads, and an online efficient product marketplace to educate California residents about the idle load of their home and ways to reduce it. The system will be piloted within all three electric investor owned utility territories and measure actual energy savings through smart meter data.
Project Abstract
This project seeks to reduce computers' energy consumption by improving how users employ existing power management capabilities. Although all computers have the capacity to enter low-power modes such as sleep, and can be shut down when not in use, this potential for energy savings has not been realized in the majority of desktop computers. The majority of desktop computers remain on at full power when they are not being used. The problem is one of user behavior. The project will use a software solution to change user behavior by changing the tool they are using. This approach is firmly based in behavior theory and human-computer interaction research, which have long demonstrated that the interface of a device can change users' behavior. The energy savings of applying such an interface is estimated to be as high as 50 percent per computer, between 139 and 321 kWh per year.
Project Abstract
This project seeks to reduce computers' energy consumption by improving how users employ existing power management capabilities. Although all computers have the capacity to enter low-power modes such as sleep, and can be shut down when not in use, this potential for energy savings has not been realized in the majority of desktop computers. The majority of desktop computers remain on at full power when they are not being used. The problem is one of user behavior. The project will use a software solution to change user behavior by changing the tool they are using. This approach is firmly based in behavior theory and human-computer interaction research, which have long demonstrated that the interface of a device can change users' behavior. The energy savings of applying such an interface is estimated to be as high as 50 percent per computer, between 139 and 321 kWh per year.
Project Abstract
This project will test and validate an Intelligent Energy Management Solution (iEMS) in 100 residences to communicate with a variety of distributed energy resources over different climate zones and behavioral patterns. The intent of the project is to model and measure the potential energy and cost impact associated with the use of the iEMS in homes without affecting occupant comfort. The project will also integrate the use of pilot time-of-use utility rates in conjunction with simulated dynamic pricing signals to optimize customer cost savings.
Project Abstract
Heating and cooling represents the greatest energy consumption in buildings. This agreement develops thermal building insulation material with high R-value at a cost competitive to conventional insulation materials. The expected result provides a significant increase in energy efficiency for retrofitting buildings.
Project Abstract

Increasing the albedo (solar reflectance) of a building's envelope reduces solar heat gain in the cooling season. Raising envelope albedo can also cool the outside air, boosting energy savings and demand reduction by decreasing the air temperature difference across the building envelope. Lowering urban surface and air temperatures improves air quality by slowing the reactions that produce smog, and delays global warming through negative radiative forcing ("global cooling"). Current data are insufficient to accurately predict savings impacts for different cool wall materials; which prevents cool wall technology from being included in building standards or utility rebate programs.

Project Abstract
This project researched new phase change materials (PCM) to store thermal energy for wall assemblies, and develop associated software tools. Heat is absorbed or released when the materials change from solid to liquid or vice versa. PCMs absorb thermal energy and they can reduce the need for heating and cooling in some buildings. Their impact is similar to that of adding thermal mass to the building. Unlike air conditioning systems, they require no maintenance. The use of PCMs and associated software tools can contribute to zero net energy commercial buildings by reducing the energy needs of a building through passive design.
Project Abstract
The Recipient will develop Transactive Load management (TLM) signals, expressed in the form of proxy prices reflective of current and future grid conditions, and implement software to calculate such signals. These signals will be designed to provide customers sufficient information to optimize their energy costs by managing their demand in response to system needs. The signals will be transported via proven and available protocols and networks for use by projects that will test the efficacy of the TLM signals using the demand response projects awarded under agreement EPC-15-054.
Project Abstract
This project will develop an interoperable protocol that can be implemented in all plug-load devices, unhampered by proprietary restrictions which will implement energy reporting to enable plug-load devices to transmit operating information - such as identity, power consumption, and functional state - through a communications network to a central entity. After a communication infrastructure is established for plug-load devices, the data flow can be reversed to send control signals to individual devices. The central management system that this project will demonstrate is well positioned to provide comprehensive control over diverse plug-load devices.
Project Abstract
This project will develop an interoperable protocol that can be implemented in all plug-load devices, unhampered by proprietary restrictions which will implement energy reporting to enable plug-load devices to transmit operating information - such as identity, power consumption, and functional state - through a communications network to a central entity. After a communication infrastructure is established for plug-load devices, the data flow can be reversed to send control signals to individual devices. The central management system that this project will demonstrate is well positioned to provide comprehensive control over diverse plug-load devices.
Project Abstract
This project is funding the planning, permitting, and preliminary engineering needed for the integration of advanced energy technologies in a disadvantaged community. The design will provide locally generated, GHG-free electricity from community solar and storage to offset electricity consumption of participants who opt in to the AEC. The design will also enable participants to benefit from savings resulting from various onsite Integrated Demand Side Management (IDSM) actions at no up-front cost, including energy efficiency retrofits, demand response, energy management systems, and an energy education and support program. Participants will pay back retrofit costs and cost of capital for solar and storage assets through an on-bill financing mechanism, including a first-of-its-kind virtual net metering (VNEM) tariff across multiple county-owned sites and residential buildings piloted by Los Angeles Community Choice Energy (LACCE). The project has a strong focus on local outreach and engagement to promote community participation in the AEC, as well as robust data evaluation methods facilitated through the LA County Energy Atlas to ensure design and financing features are optimized.