Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 50 of 169

Project Abstract
The University of Florida will develop a technology for compact, low-cost combined water heating, dehumidification, and space cooling. This technology has the potential to save 480 TBtu/year in water heating and an additional 135 TBtu/year by reducing the air conditioning load.
Project Abstract
The Industrial Science & Technology Network, Inc. will develop an environmentally clean, cost-effective building insulation with superior performance. Commercialization of this technology would reduce U.S. energy consumption related to building envelope components by 7%, equal to $8 billion in annual economic savings.
Project Abstract
Lawrence Berkeley National Laboratory will identify an alternative method to estimate two difficult-to-measure inputs used in building energy modeling. The end product will simplify and help automate the process of creating a calibrated model for existing buildings.
Project Abstract
Argonne National Laboratory will develop an acoustic method of measuring the infiltration of a building envelope. The method will enable infiltration measurement of all buildings, which could lead to decreased building energy use.
Project Abstract

This project deploys APMD technology over a large sample size, at approximately 55,000 computer workstations at several Community Colleges, and focuses on integrating the technology with facility operations to ensure that they meet the needs of the sites and staff. Key features of the proposed project include outreach and individual education programs to California Community College Districts, evaluation of sites for participation in the project, purchase and installation of APMDs at approved sites, measurement and verification (M&V) activities both pre- and post-APMD implementation at the selected demonstration sites, and stakeholder satisfaction information from demonstration facilities staff and APMD end-users through interviews and surveys.

Project Abstract
The Center for Energy and Environment and partners will field test and optimize an innovative new method for whole house air-sealing using aerosol sealant. This aerosol sealant method is already a proven duct sealing solution, and can reduce time and labor costs by simultaneously measuring, locating, and sealing leaks.
Project Abstract
The Institute for Market Transformation will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S. Department of Energy (DOE) is continually expanding this network of residential energy efficiency programs and partners to new members.
Project Abstract
The Fraunhofer Center for Sustainable Energy Systems will develop a plastic foam for use in U.S. buildings that is less expensive, mechanically stronger, and more environmentally friendly than current options. This foam will satisfy fire safety codes without the need for fire retardants and is easy to install.
Project Abstract
Oak Ridge National Laboratory (ORNL) will work to address key issues in high performance HVAC and envelope systems by mitigating market uncertainty regarding the durability of high-performing envelope systems and validating and demonstrating advanced heating, ventilation, and air conditioning (HVAC) solutions for low-load homes. Improved technologies and systems can result in significant savings on monthly utility bills, reducing the payback period and offsetting the initial investment for the homeowner.
Project Abstract
The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more.
Project Abstract
The Georgia Institute of Technology will support 20 student project teams in developing building energy efficiency technologies through a capstone design project. This effort will better prepare students for employment in the building energy efficiency sector. Additionally, the combined energy savings from these projects is estimated to add up to over 1.8 Quads per year.
Project Abstract
The U.S. Department of Energy (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Guidelines are based on the collaborative efforts of DOE and its stakeholders to develop a framework for organizing core building science principles with key job classifications.
Project Abstract
This research will examine several high aspect ratio (15:1) cylinders, (smooth, roughened and grooved) in a wind tunnel test that specifically measures dynamic response to simulated boundary layer flow. Both along- and cross-wind response will be measured for a range of wind speeds to determine the nature of the loading and in particular the effect of the grooves on the loading and axial wind speeds. This will provide the necessary data to develop a full proposal to study the bio-mimicry aspects of this work to the aerodynamics of tall buildings.
Project Abstract

The Window Covering Manufacturing Association will create the Attachments Energy Rating Council to develop an independent rating, certification, labeling, and performance verification program for window attachments. This program will help drive market penetration of energy-saving products and further innovation in the industry.

Project Abstract
NEEP conducted a market assessment of existing installer practices as well as existing guidance tools, protocols and resources specific to cold climates. Using the market assessment findings, NEEP developed ccashp design and installation guidance for trade contractors. The documents are developed to assist installers around sizing and selecting ASHPs for cold climate applications, while preserving high efficiency, performance, and customer satisfaction. HI Cat will cross-promote and link to the guidance.
Project Abstract
Maryland Energy and Sensor Technologies, LLC will develop a compact, high-efficiency thermoelastic cooling system. This next-generation HVAC technology will have low environmental impact and a small carbon footprint and could lead to substantial efficiency gains in building heating and cooling.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
This project will demonstrate how a large number of small electric loads, each impacted by and tuned to individual customer preferences can provide load management for both utilities and the California Independent System Operator (California ISO). The recipient will work with an extensive spectrum of leading product providers covering all major distributed energy resources (DERs), such as Nest (thermostats), ThinkEco (plug loads), Honda, BMW (auto), EGuana (smart Inverter) and Ice Energy (Thermal Storage). A variety of price signals will be tested for Time-of-Use customers such as Critical Peak Pricing and Demand Rate. The project will use deep analytics to evaluate individual customer preferences for demand management using microdata from devices and aggregate the responses to meet grid needs at different distribution and transmission levels.
Project Abstract
Advanced Climate Technologies (ACT) is a manufacturer of fully automatic, high-efficiency, low-emission biomass-fired boilers, interested in expanding their manufacturing facility in Niskayuna, NY to include an automated manufacturing system. This project involves the design, purchase, installation, and commissioning of the automated manufacturing system. The automated manufacturing system will allow ACT to process raw steel into prepared components. This will include a state-of-the art multi-tiered automated process that will allow for the cutting, drilling, and nesting of ASME steel plate used for the vessel and component parts of the boiler. By increasing their manufacturing capabilities, the ACT will bring processes in-house that have thus far been subcontracted. This project will eliminate certain inefficiencies in the manufacturing value chain and reduce total manufacturing time for product improvement, cost, and waste. The cost savings will be passed to consumers, directly benefiting the biomass heating market and customers in NY.
Project Abstract
UoR shall evaluate a new manufacturing process for producing lower cost superwicking materials. The wicking performance of the material produced with the new manufacturing process will be tested and compared to a wicking material produced using a laser surfacing technique.
Project Abstract
Lumileds, LLC will reduce LED manufacturing costs by eliminating some of the complex processes associated with current flip-chip technology and enabling lower-cost packaging methods. This project looks to address the needs of the indoor and outdoor illumination markets, which demand the most competitive Lm/W and Lm/$ characteristics in small footprint components.
Project Abstract
The project will seek to develop a residential and commercial logwood-fired boiler with the ability to modulate firing rates down to <10% of rated output while maintaining clean and efficient operation. The boiler will include high levels of insulation in both combustion chambers and preheating of combustion air to promote clean operation at low loads. Forced, multi-port injection and swirl mixing of secondary air similar to natural gas fired burners will be used. Certifications such as UL, CSA, and ASME will be sought.
Project Abstract
The project effort is a two-year development program focused on isocyanurate-based nanofoam for building and industrial applications. The main target of this early stage innovation project is to develop a PIR-based super insulation at atmospheric pressure (SIAP) that (1) can attain an R-12 hrft2F/Btuin (_=12 mW/mK) via creating nanoporous morphology, (2) is mechanically robust and (3) is cost-competitive to the conventional rigid foam boards.
Project Abstract
Hudson Fisonic will develop, design, manufacture, and install FDs for space heating and domestic hot water at the Woolworth building (57 stories, 900k ft2). The performance of the FD will be monitored for 12 months to determine the steam and potable water savings from use of this technology. Hudson Fisonic will start the commercialization of the FD technology by engaging the manufacturer - Division LLC Corporation, located in Long Island City, New York, in fabricating and preparing the necessary facilities and equipment for commercial manufacturing of FDs
Project Abstract
Newport Partners, in partnership with Broan-NuTone, will develop and validate a smart range hood that senses pollutants and automatically operates to remove the contaminants efficiently. The proposed smart range hood will be quiet (<1 sone), five times more energy efficient than todays ENERGY STAR models, and will capture nearly 100% of pollutants.
Project Abstract
This project will research DC and AC-DC hybrid systems in buildings and develop resource information, end-use templates, and building guidelines that could improve the ability to achieve zero net energy buildings. The feasibility, costs, benefits, market barriers, and customer and education needs will be assessed, including guidelines for residential and small commercial buildings.
Project Abstract
The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.
Project Abstract

Pacific Northwest National Laboratory will develop a low-cost window coating that allows infrared (heat) penetration in cooler temperatures but switches to reflect infrared waves in warmer temperatures. This coating has the potential to save up to 2.24 quads/year in heating, cooling, and lighting energy use.

Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
This project will research and develop new technologies and strategies to eliminate or significantly reduce energy use in standby mode by redesigning the power supply for plug load devices. This research project will also develop and demonstrate strategies to remove plug load devices from grid AC power by redesigning these devices to use DC power from photovoltaic power sources.
Project Abstract
University of Michigan - Ann Arbor will develop innovative methods to outcouple the light within OLED devices in order to increase external quantum efficiency. This will be accomplished through nanoscale texturing beneath the anode outside the active region, fabricating sub-anode gratings along with microlens arrays, and top emitting structures with a sub-anode grid coupled with a reflective mirror at the base.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
Oak Ridge National Laboratory will develop system-level architecture for a plug-and-play multi-sensor platform, which can utilize peel-and-stick sensors less than a quarter of an inch thick and powered by indoor, high-performance, flexible photovoltaics. By developing sensors that are multi-functional and self-powered, this innovative platform can be adopted and deployed for wider spread energy efficiency of buildings.
Project Abstract

PPG Industries, Inc. will develop a process to produce cheaper, stronger vacuum insulating glazings (VIGs), which are used to make windows more energy efficient. This process could lead to increased adoption of VIGs in windows, which would lead to significant energy savings.

Project Abstract
The goal of this research project is to determine if it is possible to pre-heat water for swimming pools to save energy. The study is designed to show the efficacy of this application as well as the associated energy savings. In 2016, BPA engineering collected baseline operation data on the existing electric resistance water heater for a residential swimming pool. Early in 2017, the CO2HPWH was installed and monitored. The initial results showed that the system was under performing and a number of modifications are being considered. The current plan is to implement the modifications and monitor the new design through December 2017 to allow for warm and cold weather operation. A final paper will be prepared by February 2018. While this study is focused on the residential sector, the nature and results of this study are also applicable to water heating EE projects in the commercial sector. BPA will generate a summary brief which will inform the region of the results. Its important to build the body of knowledge for CO2 heat pumps and demonstrate the efficacy of a new use case.