Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 50 of 240

Project Abstract
The University of Florida will develop a technology for compact, low-cost combined water heating, dehumidification, and space cooling. This technology has the potential to save 480 TBtu/year in water heating and an additional 135 TBtu/year by reducing the air conditioning load.
Project Abstract
The Industrial Science & Technology Network, Inc. will develop an environmentally clean, cost-effective building insulation with superior performance. Commercialization of this technology would reduce U.S. energy consumption related to building envelope components by 7%, equal to $8 billion in annual economic savings.
Project Abstract
Lawrence Berkeley National Laboratory will identify an alternative method to estimate two difficult-to-measure inputs used in building energy modeling. The end product will simplify and help automate the process of creating a calibrated model for existing buildings.
Project Abstract
Seventhwave's Accelerate Performance scales owner demand for energy performance at a cost comparable to current construction by eliminating key market bariers. This program will achieve an average of 50% realized savings compared to traditional 30% modeled savings for aggressive new construction projects.
Project Abstract
Argonne National Laboratory will develop an acoustic method of measuring the infiltration of a building envelope. The method will enable infiltration measurement of all buildings, which could lead to decreased building energy use.
Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract

This project deploys APMD technology over a large sample size, at approximately 55,000 computer workstations at several Community Colleges, and focuses on integrating the technology with facility operations to ensure that they meet the needs of the sites and staff. Key features of the proposed project include outreach and individual education programs to California Community College Districts, evaluation of sites for participation in the project, purchase and installation of APMDs at approved sites, measurement and verification (M&V) activities both pre- and post-APMD implementation at the selected demonstration sites, and stakeholder satisfaction information from demonstration facilities staff and APMD end-users through interviews and surveys.

Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract
The objective of this project to develop and commercialize white and amber OLED lighting solutions that are uniquely tailored to the health care industry, ranging from hospital to senior assisted living centers. This project will include five main deliverables: 1) Voice of customer (VOC) exploration with hospital and healthcare personnel including nurses, facilities and other medical staff to identify lighting applications in which OLED would provide unique value. 2) Tuning amber OLED panels, if necessary for large scale production specifically for healthcare, 3) Designing and fabricating OLED fixture prototypes based on VOC 4) obtaining feedback from medical staff on prototypes including performance and effects on workflow, patients or other concerns and define launch product 5) establishing path for full commercialization of product(s).
Project Abstract
The National Trust for Historic Preservation will provide low-cost energy efficiency services to small businesses in California, Wisconsin, New York, and Washington State. These efforts aim to increase small business participation in energy retrofit programs and could lead to up to $30 billion in annual energy savings.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract

The Automated Cloud-based Continuously Optimizing Building Energy Management System (ACCO-BEMS) overcomes limitations of existing energy management systems by automating optimized control of building systems and devices. The technology overcomes limitations of existing energy management systems and eliminates the need for expensive reprogramming needed to implement optimization measures. As such, the technology can co-exist with existing systems in retrofit applications, or it can be implemented as a new installation.

Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract

This project optimizes and simplifies control upgrades to demonstrate energy savings while improving occupant comfort. This demonstration uses automated fault detection and diagnostics and continuous commissioning with the use of advanced measurement and verification procedures. The agreement includes recommendations for strategies, tools, and initiatives to address market barriers and promote large scale market adoption.

Project Abstract
The Fraunhofer Center for Sustainable Energy Systems will develop a plastic foam for use in U.S. buildings that is less expensive, mechanically stronger, and more environmentally friendly than current options. This foam will satisfy fire safety codes without the need for fire retardants and is easy to install.
Project Abstract
BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.
Project Abstract
The Georgia Institute of Technology will support 20 student project teams in developing building energy efficiency technologies through a capstone design project. This effort will better prepare students for employment in the building energy efficiency sector. Additionally, the combined energy savings from these projects is estimated to add up to over 1.8 Quads per year.
Project Abstract
The Virginia Tech Advanced Research Institute will develop a software platform that improves sensing and control of equipment in small and medium-sized commercial buildings. The platform will be able to optimize electricity usage to reduce energy consumption and help implement demand response.
Project Abstract
The City of Seattle will engage with building owners, managers, and service providers to develop market expertise to train local building operations professionals to more effectively tune-up existing buildings, which could reduce city energy costs by $1.5 million annually. Professionals will tune-up 70-80 buildings with 10-20% energy savings, and complete capital retrofits to 20-30 buildings providing 35% energy savings, for a total of 1 billion kBtu annual savings.
Project Abstract
This project demonstrates three innovative bundles of pre-commercial technologies. The technology bundles were strategically developed through a systems-level approach to address the most energy-intensive areas in commercial buildings. These include: (1) Chilled Water Plants: Optimized all-variable-speed chilled-water (CHW) plants utilizing alternative refrigerant chillers. (2) Office and Exterior Space LED fixtures with integrated advanced controls, advanced building management system (BMS), and plug load controls controllable for demand response (DR), and off-grid, exterior, LED lighting in the parking lot, and lastly (3) Advanced laboratory ventilation, fume hood exhaust, and direct current (DC) lighting systems.
Project Abstract

The Window Covering Manufacturing Association will create the Attachments Energy Rating Council to develop an independent rating, certification, labeling, and performance verification program for window attachments. This program will help drive market penetration of energy-saving products and further innovation in the industry.

Project Abstract
This project will develop and demonstrate a Climate Appropriate Air Conditioning system for commercial buildings. The heart of this system is an intelligent HVAC controller that processes signals from building sensors and system feed-back to maximize system efficiency. This control system will manage two technologies to optimize building energy and peak demand reduction. Getting fresh air into commercial buildings is a code requirement. However, the ingress of hot air into a cooling system and vice versa presents an inefficiency problem. This project will evaluate heat-recovery ventilation (HRV) and indirect evaporative cooling (IEC) to decrease the temperature of the incoming air in the summer and increase it in the winter. Both technologies can be intelligently controlled by the building controller to reduce cooling and heating costs. This project will also research low global warming refrigerants for commercial buildings
Project Abstract
NEEP conducted a market assessment of existing installer practices as well as existing guidance tools, protocols and resources specific to cold climates. Using the market assessment findings, NEEP developed ccashp design and installation guidance for trade contractors. The documents are developed to assist installers around sizing and selecting ASHPs for cold climate applications, while preserving high efficiency, performance, and customer satisfaction. HI Cat will cross-promote and link to the guidance.
Project Abstract
The Northeast Energy Efficiency Partnerships will demonstrate advanced lighting controls (ALCs), which turn off or dim lights when they are not in use, in 10 buildings in order to address barriers to ALC adoption. Installing ALC systems in all commercial buildings would save approximately 1,053 TBtu of energy or $10.4 billion/year.
Project Abstract
Maryland Energy and Sensor Technologies, LLC will develop a compact, high-efficiency thermoelastic cooling system. This next-generation HVAC technology will have low environmental impact and a small carbon footprint and could lead to substantial efficiency gains in building heating and cooling.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.
Project Abstract
NextEnergywill reduce market barriers to adoption of lighting controls solution to spur market adoption. This will be achieved through demonstrations, consumer education, and utility incentive adjustment. NextEnergy and partners will train over 100 contractors in advanced lighting controls and simplified installation methods and develop a model for streamlined incentives for lighting controls.
Project Abstract
BlocPower will develop a crowd-sourcing website to help market, finance, and install energy efficiency retrofits for 1,500 small buildings in low-income communities across the country. These efforts could help these communities achieve notable energy savings and reduce their carbon emissions.
Project Abstract
The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.
Project Abstract
A.O. Smith Corporation will demonstrate underutilized micro-combined-heat-and-power (micro-CHP) applications, which produce electricity and heat from a single source, in buildings with significant hot water demand. These micro-CHP applications can provide 38% energy savings in these building types.
Project Abstract
The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.
Project Abstract
Working with project partners from the Seattle Lighting Design Laboratory, the Lighting Research Center (LRC) will identify a suitable outdoor lighting installation in a parking lot and conduct evaluations of energy and power use, visual responses of people in and approaching the outdoor location, and subjective ratings of safety and personal security while viewing and occupying the location. The design of the lighting installation will utilize published research on the spectral sensitivity of the human visual system for scene brightness perception and on the relationships between scene brightness and perception of safety and security previously published by the LRC project team. The proposed project will consist of a full-scale outdoor lighting demonstration at a parking lot facility within BPA service territory. The demonstration will be based on a proposed specification method for maximizing perceptions of safety and security of occupants, taking advantage of the differential spectral (color) sensitivity of the human visual system for brightness perception at nighttime light levels. Sensations of brightness are in turn strongly related to perceptions of personal safety and security in outdoor locations. It is anticipated that using white light sources such as a lighting emitting diode (LED) illumination in place of conventional high pressure sodium (HPS) illumination energy savings of 40-50% will be possible while maintaining perceptions of brightness, safety, and security.
Project Abstract
This project seeks to develop operational procedures and proper system sizing guidelines for the inclusion of thermal storage in biomass-fired steam generation. The Town of Chester will design, install, commission, and evaluate a high-efficiency, low-emission pellet-fired steam boiler integrated with a wet steam accumulator for thermal storage. The system will be installed in the Town of Chester municipal building in Chestertown, NY, a 36,000 sq. ft. brick building originally fitted with a steam heating system. The existing boiler room has two oil-fired steam boilers, one currently out-of-service, which will be replaced by the proposed biomass-fired steam boiler. The project will demonstrate, measure, and evaluate the benefits of complete system integration, including a properly sized biomass-fired boiler, adequate thermal storage, building energy management and controls, and an existing oil-fired boiler
Project Abstract
Advanced Climate Technologies (ACT) is a manufacturer of fully automatic, high-efficiency, low-emission biomass-fired boilers, interested in expanding their manufacturing facility in Niskayuna, NY to include an automated manufacturing system. This project involves the design, purchase, installation, and commissioning of the automated manufacturing system. The automated manufacturing system will allow ACT to process raw steel into prepared components. This will include a state-of-the art multi-tiered automated process that will allow for the cutting, drilling, and nesting of ASME steel plate used for the vessel and component parts of the boiler. By increasing their manufacturing capabilities, the ACT will bring processes in-house that have thus far been subcontracted. This project will eliminate certain inefficiencies in the manufacturing value chain and reduce total manufacturing time for product improvement, cost, and waste. The cost savings will be passed to consumers, directly benefiting the biomass heating market and customers in NY.
Project Abstract
The Lighting Research Center at Rensselaer Polytechnic will create a prototype office desktop lighting control. The device will be a combination of a motion sensor, photosensor, manual dimmer or switch, and wireless transmitter. It will sit either directly on a desk surface or be mounted to the top of a computer monitor, and will control the lighting in private or open offices. It will be paired with a receiver that will control the luminaire(s) that are nearby.
Project Abstract
UoR shall evaluate a new manufacturing process for producing lower cost superwicking materials. The wicking performance of the material produced with the new manufacturing process will be tested and compared to a wicking material produced using a laser surfacing technique.
Project Abstract

The recipient will develop low-cost lighting components with open communication interfaces that allow seamless integration into whole-building control and automation systems. The project will target future California Building Energy Efficiency Standards (Title 24), and establish methods by which the site-specific configuration and operation of networked lighting controls systems can be effectively addressed, and more easily implemented by the marketplace