Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 25 of 108

Project Abstract
IBACOS will investigate a simplified residential air delivery system to resolve comfort issues reported in low-load, production-built homes. This project could result in state-of-the-art comfort distribution systems, as well as a thermal comfort metric that helps builders and HVAC contractors measure and communicate the value of improved comfort delivery systems.
Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract
This project is part of a national study aimed at characterizing indoor air quality in occupied homes. The homes will be up to current energy codes, and researchers will closely monitor the use and performance of mechanical ventilation systems in those homes. Indoor and outdoor air will be sampled for formaldehyde, nitrogen oxides, carbon dioxide, and particulates as part of the indoor air quality characterization.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
This research project is focused on opportunities for achieving near-term energy efficiency gains in heating appliances, specifically integrated systems that combine low ambient heat pumps and high efficiency oil-fired boilers. The Contractor shall conduct field studies in order to better understand how these hybrid systems are currently being installed and operated. Following the field studies, an analysis effort shall be undertaken in order to quantify the effect of a heating system's components performance, sizing, and control strategies on annual energy performance. The Contractor shall then develop a Best Practices Guide for hybrid heat pump/oil-fired boiler systems. The project concludes with the dissemination of the Best Practices Guide as well as the publication and conference presentation of any technical papers developed from the laboratory evaluation.
Project Abstract
This research project is focused on opportunities for achieving near-term energy efficiency gains in heating appliances, specifically high-efficiency, low-cost, boilers with integrated tankless coils for domestic hot water. The project begins with an evaluation of commercially available tankless coil boilers and potential low-cost technical improvements. The Contractor shall evaluate the performance of (6) of these boilers in a laboratory setting in order to evaluate the thermal, seasonal, and annual efficiency. Following the laboratory evaluation, the Contractor shall develop a Best Practices Guide for Tankless Coil Boilers. The project concludes with the dissemination of the Best Practices Guide as well as the publication and conference presentation of any technical papers developed from the laboratory evaluation.
Project Abstract
BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.
Project Abstract
The University of Central Florida will demonstrate and validate energy-efficient residential ventilation and space conditioning systems. Advanced whole-house residential construction practices can achieve 50% energy savings compared to houses built to code in hot/humid climates.
Project Abstract
This project picks up on an ET project with long-term performance monitoring of a cold climate heat pump in Fairbanks, AK. In the United States, approximately 14.4 million dwellings use electricity for heating in cold and very cold regions, consuming 0.16 quads of energy annually. A high-performance cold climate heat pump (CCHP) can result in significant savings over current technologies (greater than 70% compared to strip heating) and in annual primary energy savings of 0.1 quads when fully deployed, which is equivalent to a reduction of 5.9 million tons of annual carbon dioxide emissions. A case study will be created for submission to the Building America Solution Center that documents how the equipment performed during the field study, including estimated HSPF and SEER ratings for this type of technology in order to provide a reference for comparison to existing equipment.
Project Abstract
ClearStak will work with Heating Systems, LTD (Thermo-Control), a biomass-fired heating device manufacturer in Cobleskill, NY, to replace the existing controls on the Model 600 wood burner with non-proprietary components and software. This will be completed using their existing Intelligent Biomass Controller (IBC) to optimize combustion efficiency. The IBC allows for wireless connectivity, giving end-users access to remote monitoring capabilities, data reports, and alert notifications. Following the successful modifications to the system and the integration of the IBC, the entire system shall be tested using the Method 28WHH for Certification of Cord Wood-Fired Hydronic Heating Appliances With Partial Thermal Storage (Method 28 WHH-PTS) method at an EPA accredited testing laboratory. The project will be completed with UL testing and certification of the entire system, resulting in a commercial-ready product
Project Abstract
This project will develop and demonstrate a Climate Appropriate Air Conditioning system for commercial buildings. The heart of this system is an intelligent HVAC controller that processes signals from building sensors and system feed-back to maximize system efficiency. This control system will manage two technologies to optimize building energy and peak demand reduction. Getting fresh air into commercial buildings is a code requirement. However, the ingress of hot air into a cooling system and vice versa presents an inefficiency problem. This project will evaluate heat-recovery ventilation (HRV) and indirect evaporative cooling (IEC) to decrease the temperature of the incoming air in the summer and increase it in the winter. Both technologies can be intelligently controlled by the building controller to reduce cooling and heating costs. This project will also research low global warming refrigerants for commercial buildings
Project Abstract
Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.
Project Abstract
NEEP conducted a market assessment of existing installer practices as well as existing guidance tools, protocols and resources specific to cold climates. Using the market assessment findings, NEEP developed ccashp design and installation guidance for trade contractors. The documents are developed to assist installers around sizing and selecting ASHPs for cold climate applications, while preserving high efficiency, performance, and customer satisfaction. HI Cat will cross-promote and link to the guidance.
Project Abstract
SU will develop a single-stage air filtration technology for particle and gaseous pollutant removal. The work will determine the proper mixture ratio of hybrid sorbent media according to the pollutants in the air streams. The attachment method and size of activated sorbent powders to be applied on the fiber of a particle filter will be studied. SU will evaluate the effects of operational environmental conditions (including temperature, humidity, and airflow conditions) on the combinatorial filter removal efficiency and service life.
Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
Maryland Energy and Sensor Technologies, LLC will develop a compact, high-efficiency thermoelastic cooling system. This next-generation HVAC technology will have low environmental impact and a small carbon footprint and could lead to substantial efficiency gains in building heating and cooling.
Project Abstract
The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.
Project Abstract
This project seeks to develop operational procedures and proper system sizing guidelines for the inclusion of thermal storage in biomass-fired steam generation. The Town of Chester will design, install, commission, and evaluate a high-efficiency, low-emission pellet-fired steam boiler integrated with a wet steam accumulator for thermal storage. The system will be installed in the Town of Chester municipal building in Chestertown, NY, a 36,000 sq. ft. brick building originally fitted with a steam heating system. The existing boiler room has two oil-fired steam boilers, one currently out-of-service, which will be replaced by the proposed biomass-fired steam boiler. The project will demonstrate, measure, and evaluate the benefits of complete system integration, including a properly sized biomass-fired boiler, adequate thermal storage, building energy management and controls, and an existing oil-fired boiler
Project Abstract
Advanced Climate Technologies (ACT) is a manufacturer of fully automatic, high-efficiency, low-emission biomass-fired boilers, interested in expanding their manufacturing facility in Niskayuna, NY to include an automated manufacturing system. This project involves the design, purchase, installation, and commissioning of the automated manufacturing system. The automated manufacturing system will allow ACT to process raw steel into prepared components. This will include a state-of-the art multi-tiered automated process that will allow for the cutting, drilling, and nesting of ASME steel plate used for the vessel and component parts of the boiler. By increasing their manufacturing capabilities, the ACT will bring processes in-house that have thus far been subcontracted. This project will eliminate certain inefficiencies in the manufacturing value chain and reduce total manufacturing time for product improvement, cost, and waste. The cost savings will be passed to consumers, directly benefiting the biomass heating market and customers in NY.