Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 24 of 24

Project Abstract
This project will demonstrate the potential of breakthrough electric water heating and space conditioning technologies as a pathway to zero net energy. The project will explore the complex, interdependent systems in multifamily buildings and how they work together to achieve zero net energy status for the buildings in a cost-effective manner. Four multifamily buildings, designed to be affordable, will be evaluated in various stages of design and development. These buildings will share a goal of all electric zero net energy construction with 100 percent renewable energy generation, and will utilize innovative new heat pump technologies to serve the buildings water heating and/or space conditioning needs.
Project Abstract
This project will develop and demonstrate an approach to scale residential retrofits for disadvantaged communities that will focus on customer-centric solutions. This project will develop and demonstrate an innovative approach, focusing on energy efficient retrofit packages that are non-intrusive to occupants and have the potential of reducing energy use by 30 to 40 percent.
Project Abstract
This project will demonstrate how a large number of small electric loads, each impacted by and tuned to individual customer preferences can provide load management for both utilities and the California Independent System Operator (California ISO). The recipient will work with an extensive spectrum of leading product providers covering all major distributed energy resources (DERs), such as Nest (thermostats), ThinkEco (plug loads), Honda, BMW (auto), EGuana (smart Inverter) and Ice Energy (Thermal Storage). A variety of price signals will be tested for Time-of-Use customers such as Critical Peak Pricing and Demand Rate. The project will use deep analytics to evaluate individual customer preferences for demand management using microdata from devices and aggregate the responses to meet grid needs at different distribution and transmission levels.
Project Abstract
This project will research DC and AC-DC hybrid systems in buildings and develop resource information, end-use templates, and building guidelines that could improve the ability to achieve zero net energy buildings. The feasibility, costs, benefits, market barriers, and customer and education needs will be assessed, including guidelines for residential and small commercial buildings.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response
Project Abstract
This project will demonstrate the installation of innovative technologies to retrofit an existing, low-income, mixed-use multi-unit building in a dense urban setting to become zero net energy (ZNE). Innovative strategies include a rapid new technology discovery and assessment approach, to ensure the most current emerging technologies are incorporated, as well as innovative measurement and verification. These approaches and other ZNE design process innovations will be packaged into an advanced ZNE design methodology for use in the demonstration project as well as broad dissemination to the design and innovation community. Numerous technical innovations and pre-commercial technologies are planned for inclusion including dynamic chromatic glass, heat recovery ventilators, variable refrigerant flow, occupancy based plug-load management, advanced light emitting diode lighting systems and a combined photovoltaic-thermal system.
Project Abstract
This project will demonstrate the installation of innovative technologies to retrofit an existing, low-income, mixed-use multi-unit building in a dense urban setting to become zero net energy (ZNE). Innovative strategies include a rapid new technology discovery and assessment approach, to ensure the most current emerging technologies are incorporated, as well as innovative measurement and verification. These approaches and other ZNE design process innovations will be packaged into an advanced ZNE design methodology for use in the demonstration project as well as broad dissemination to the design and innovation community. Numerous technical innovations and pre-commercial technologies are planned for inclusion including dynamic chromatic glass, heat recovery ventilators, variable refrigerant flow, occupancy based plug-load management, advanced light emitting diode lighting systems and a combined photovoltaic-thermal system.
Project Abstract
This project will develop and evaluate cost-effective packages of pre-commercial integrated energy efficiency measures and controls to achieve zero net energy (ZNE) performance for multi-story small commercial offices in San Francisco and Southern California. The packages will target a minimum of 50 percent energy savings when compared to standard building energy use. The packages of energy efficiency measures will be analyzed at Lawrence Berkeley National Laboratory's FLEXLAB, an advanced facility for testing whole-building integrated systems, to develop and validate solutions under varied climate and use conditions. The simulation models will be validated through results from FLEXLAB testing and a 3-story whole-building demonstration pilot located in San Francisco. Data on energy, occupant comfort, and occupant behavior will be analyzed and packaged into best practices to be replicated elsewhere in the State.
Project Abstract
This project will develop and evaluate cost-effective packages of pre-commercial integrated energy efficiency measures and controls to achieve zero net energy (ZNE) performance for multi-story small commercial offices in San Francisco and Southern California. The packages will target a minimum of 50 percent energy savings when compared to standard building energy use. The packages of energy efficiency measures will be analyzed at Lawrence Berkeley National Laboratory's FLEXLAB, an advanced facility for testing whole-building integrated systems, to develop and validate solutions under varied climate and use conditions. The simulation models will be validated through results from FLEXLAB testing and a 3-story whole-building demonstration pilot located in San Francisco. Data on energy, occupant comfort, and occupant behavior will be analyzed and packaged into best practices to be replicated elsewhere in the State.
Project Abstract
This project will demonstrate a cost-effective pathway to achieving maximum energy efficiency in a grocery store. The project will identify and install a comprehensive costeffective energy efficiency upgrade package that utilizes innovative strategies such as advanced heating, ventilating and air conditioning systems, refrigerants, fans, air curtains, phase change materials, occupancy sensing measures and advanced lighting and controls. The project will also provide new design approaches that allow for rapid technology discovery and incorporation to ensure the most current technologies are implemented into the design.
Project Abstract
This project will demonstrate a cost-effective pathway to achieving maximum energy efficiency in a grocery store. The project will identify and install a comprehensive costeffective energy efficiency upgrade package that utilizes innovative strategies such as advanced heating, ventilating and air conditioning systems, refrigerants, fans, air curtains, phase change materials, occupancy sensing measures and advanced lighting and controls. The project will also provide new design approaches that allow for rapid technology discovery and incorporation to ensure the most current technologies are implemented into the design.
Project Abstract
The project will implement lessons learned from previous high performance housing research and measure the results in two new houses built in partnership with Habitat for Humanity and homeowners. The houses will be built in a disadvantaged community in Stockton. Each house will include advanced architectural design features, high performance enclosures, advanced heating, ventilating and air conditioning systems, low-cost water heating systems and other advanced energy efficiency measures. One all-electric home and one mixed fuel (combined electric and natural gas) home will be built to demonstrate the respective costeffectiveness of each set of features. In addition to the measured results from actual occupancy, the project will develop a guide to affordable residential zero net energy design and construction, training curriculum, and new class offerings based on the project results for building practitioners.
Project Abstract
The recipient will use EnergyPlus, a building energy modeling tool, to analyze the costeffectiveness of various electricity saving/generation measures for multifamily and commercial buildings in California. For each building type and climate zone, the results will include a cost-benefit analysis for each measure individually and for an optimized package of measures that reduces net electricity consumption to achieve as close to zero net energy as is cost-effectively possible.
Project Abstract
The recipient will use EnergyPlus, a building energy modeling tool, to analyze the costeffectiveness of various electricity saving/generation measures for multifamily and commercial buildings in California. For each building type and climate zone, the results will include a cost-benefit analysis for each measure individually and for an optimized package of measures that reduces net electricity consumption to achieve as close to zero net energy as is cost-effectively possible.
Project Abstract
The project will provide detailed cost effectiveness modeling of all electric zero net energy (ZNE) homes versus ZNE homes with gas-based heating. Evaluation will include costs of building integration, energy efficiency packages, installed equipment and lifetime investment costs such as energy costs, and infrastructure costs (natural gas pipeline and electricity distribution system). The project will provide both spatial and temporal analysis in providing cost effectiveness assessment in four California climate zones and provide cost evolution scenarios as a function of time, for example as the ZNE industry scales up and under various policy and energy cost assumptions. The analysis will provide policymakers with a better understanding of the costs and benefits of ZNE policy choices between today and future ZNE milestones (2020, 2030), and the trade-offs for all electric versus electric and gas households
Project Abstract
The project will provide detailed cost effectiveness modeling of all electric zero net energy (ZNE) homes versus ZNE homes with gas-based heating. Evaluation will include costs of building integration, energy efficiency packages, installed equipment and lifetime investment costs such as energy costs, and infrastructure costs (natural gas pipeline and electricity distribution system). The project will provide both spatial and temporal analysis in providing cost effectiveness assessment in four California climate zones and provide cost evolution scenarios as a function of time, for example as the ZNE industry scales up and under various policy and energy cost assumptions. The analysis will provide policymakers with a better understanding of the costs and benefits of ZNE policy choices between today and future ZNE milestones (2020, 2030), and the trade-offs for all electric versus electric and gas households
Project Abstract
This project will integrate water features into a novel heat exchanger which uses high performance porous fins to enhance cooling ability. Bench scale testing has shown the ability of the heat exchanger to enhance cooling through water vaporization and mass transfer. By integrating the proven heat exchanger with water features, this project has the potential to create a low cost and low risk product to reduce electric power and water use of refrigeration systems in California.
Project Abstract
This project will integrate pre-commercial energy efficiency measures, building automation and controls system, behind the meter solar photovoltaic and energy storage in three existing public libraries in the City of San Diego. In addition to demonstrating cost-effective pathways to achieving maximum energy efficiency in the small commercial/municipal building sector, the recipient will engage in a multiyear, flexible, and transparent collaboration aimed at uncovering, testing, verifying and publicizing strategies for integrating energy efficiency, energy storage, solar photovoltaics, and other demand side resources to achieve near zero net energy in each library and to evaluate the financial value proposition.
Project Abstract
This project researched new phase change materials (PCM) to store thermal energy for wall assemblies, and develop associated software tools. Heat is absorbed or released when the materials change from solid to liquid or vice versa. PCMs absorb thermal energy and they can reduce the need for heating and cooling in some buildings. Their impact is similar to that of adding thermal mass to the building. Unlike air conditioning systems, they require no maintenance. The use of PCMs and associated software tools can contribute to zero net energy commercial buildings by reducing the energy needs of a building through passive design.
Project Abstract
The project will serve as proof of concept for large-scale deployment of zero net energy (ZNE) single-family homes in California. The objective is to construct ZNE homes without creating undue cost burdens on businesses or consumers, while assuring that changes to home design do not pose health, safety or other risks to occupants. Additionally, the project will provide industry and regulators with a better understanding of the assumptions associated with site energy use and renewable energy generation and will provide resources to builders to assist them with controlling costs on ZNE home construction.