Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 25 of 85

Project Abstract
This proposal responds to BPA TIFO Interest Area 7, Cold Climate Heat Pump Water Heaters (HPWH). We propose to develop and demonstrate a novel integrated HPWH customized for demand response (DR) and efficient operation in cold climate homes.
Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.
Project Abstract
Does the combination of high use alerts and e-mail messages produce higher energy savings over just the home energy reports (HERs)? We would like to understand the level of effort it takes to launch this type of project. Cowlitz PUD in conjunction with O Power is conducting research to determine the incremental energy saving impact of an Advanced Digital Feedback and Communication Campaign in addition to O Power's Home Energy Reporting Program. Cowlitz will send 25,000 Home Energy Reports (HERs) to their customers while engaging 12,500 of them through an Advanced Digital Campaign using high use alerts and e-mail messaging. The HERs program uses billing data, census data, and other information to create a neighbor-to-neighbor billing comparison to try and change human behavior resulting in kilowatt hours saved. The hypothesis is that the customer will be moved to use less energy, operate their home more efficiently or to make no-cost, low-cost, or deemed measure changes in their home if they can compare their use with like customers. The Advanced Digital Campaign is experimental. Cowlitz is one of just a few utilities testing this approach. Research results will be available in August of 2013. Improvement over previous research: Cowlitz has advanced metering infrastructure (AMI) and will be able to provide 24-hour interval data making this the first time in the Northwest that HERs has been combined with interval data.
Project Abstract
Does the combination of the O Power's Home Energy Reports (HERs) and the Social Energy social media application create incremental energy savings impacts? This project seeks to determine the incremental energy saving impact of Social Energyan energy efficiency social media application. Social Energy enables users to compare their energy use to a self-defined group. This Social Energy Campaign is experimental. Clark is one of a few utilities testing this approach. This study will combine the Social Energy media application along with O Power's Home Energy Reporting Program. Clark will send Home Energy Reports (HERs) to 20,000 customers while engaging 10,000 of these customer through Social Energy. This application will allow Clark's customers to create their own online efficiency communities. The project has been implemented, evaluation program done during 2014 to understand the program's impact on energy savings. Improvement on previous work: Testing this application with a smaller NW utility and understanding what level of effort is involved in launching this type of program as well as determining the savings impact.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.
Project Abstract
Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.
Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
The project goal is to demonstrate the substantial demand response (DR) and energy savings are achievable in supermarket refrigeration systems and that the integrity and safety of refrigerated products will be maintained to minimize risks to supermarket owners and customers. The project plans to analyze supermarket refrigeration energy loads in the Pacific Northwest for both demand response and energy efficiency. The purpose is to identify the most promising control strategies and technologies that can yield energy savings and demand response as part of an integrated management approach.
Project Abstract
This project is a controlled field study and lab test that assessed the demand response (DR) potential of split system and unitary heat pump water heaters (HPWHs) that use carbon dioxide (CO2) refrigerant. The researchers included Washington State University (WSU), Pacific Northwest National Laboratory (PNNL), Efficiency Solutions, and Ecotope working with Cascade Engineering Services.
Project Abstract
Optimize heat pump water heater (HPWH) next generation project for both EE and DR. The major objectives of the project are: 1. Demonstrate and quantify the energy performance of the prototype GE Brillion GeoSpring Hybrid Water Heater with and without exhaust air ducting over heating and cooling conditions in the lab homes 2. Evaluate or quantify the potential for the GE smart grid-enabled HPWH to provide demand response (to both increase/absorb [INC] and decrease/shed/shift [DEC] load) under various price signals sent to the unit. In addition, the proposed project will provide GE information to determine and design the optimal ducting configurations for their unit should they decide to offer this feature as an option for this new-to-the-market unit.
Project Abstract
The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.
Project Abstract
The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.
Project Abstract
Working with project partners from the Seattle Lighting Design Laboratory, the Lighting Research Center (LRC) will identify a suitable outdoor lighting installation in a parking lot and conduct evaluations of energy and power use, visual responses of people in and approaching the outdoor location, and subjective ratings of safety and personal security while viewing and occupying the location. The design of the lighting installation will utilize published research on the spectral sensitivity of the human visual system for scene brightness perception and on the relationships between scene brightness and perception of safety and security previously published by the LRC project team. The proposed project will consist of a full-scale outdoor lighting demonstration at a parking lot facility within BPA service territory. The demonstration will be based on a proposed specification method for maximizing perceptions of safety and security of occupants, taking advantage of the differential spectral (color) sensitivity of the human visual system for brightness perception at nighttime light levels. Sensations of brightness are in turn strongly related to perceptions of personal safety and security in outdoor locations. It is anticipated that using white light sources such as a lighting emitting diode (LED) illumination in place of conventional high pressure sodium (HPS) illumination energy savings of 40-50% will be possible while maintaining perceptions of brightness, safety, and security.
Project Abstract
Demonstrate Strategic Energy Management Analytics (Build Plus) in 2 buildings for 1 year. This research builds on a tool created with funding through BPAs Technology Innovation Research and Development Program. Work has continued to refine the tool and research needs to be conducted to verify savings. The tools will be installed at the facilities for up to 1 year starting in 2016 and analyses will follow in late 2017.
Project Abstract
An advanced thermal post-packaging food preservation technology for controlling pathogens called "Microwave Assisted Thermal Sterilization" (MATS) has been developed by a team led by Washington State University (WSU) (http://www.microwaveheating.wsu.edu/). MATS technology has the potential for replacing conventional thermal retort ("canning") food preservation methodologies due to its greatly reduced processing time. Typical MATS processes cut conventional canning processing time by 80%, with increased energy efficiency and superior finished product characteristics like improved nutrient retention and substantially increased food quality.
Project Abstract
Multifamily (MF) is hugely underserved in Residential energy efficiency (EE) Programs and part of our MF ductless heat pump (DHP) strategy is to look at different MF use cases and identify which MF use cases provide a higher EE potential. So far DHP results in MF are mixed and this project will assess the energy use and savings of ductless heat pumps in mid-rise MF buildings. This study offers a unique opportunity for a side by side comparison of heat pumps and electric resistance heat within a single apartment building with 278 apartments. The project would collect billing data on all the individual units, conduct an analysis to disaggregate heating, cooling, and baseload energy use, and compare the two types of heating systems.
Project Abstract
Seven alternative ductless heat pump (DHP) solutions were identified during the 2014 Washington State University (WSU) Assessment Study, including multiple internal heads, ducting between rooms, etc. Two solutions were recommended for further research. Technology and research plans need to be developed for these alternatives. Research plans will need to be developed for this project.
Project Abstract
The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.
Project Abstract
The 7th Power Plan has targeted 261aMWs of savings for embedded data centers and BPA would like to develop a series of new measures to acquire these savings. Embedded Data Centers are defined as server rooms located on-site in commercial buildings which are larger than server closets but smaller than enterprise data centers. This project will inform and streamline custom projects for future Data Center Air Flow Management retrofits which may include multiple data center HVAC retrofits, including blanking panels, raising space temperatures, containment and air flow management. Up to two grants will be awarded to participate in this field study to test Data Center Air Flow Management retrofits and other HVAC solutions for Embedded Data Centers. This field study will also demonstrate and verify a Data Center Air Flow Management (AFM) energy savings calculator developed by Seattle City Light in the Data Center Track and Tune Project.
Project Abstract
The Pacific Northwest National Laboratory (PNNL) and the Northwest Food Processors Association (NWFPA) propose to carefully evaluate opportunities for energy, emission, and cost savings and non-wires solutions, including alleviation of transmission bottlenecks and fast-ramping supply capabilities with greater use and better design of combined heat and electric power (CHP) distributed generators (DGs); combined cooling, heating, and electric power (CCHP) DG; and energy storage installed on-site at energy-intensive food processing facilities.