Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 25 of 323

Project Abstract
IBACOS will investigate a simplified residential air delivery system to resolve comfort issues reported in low-load, production-built homes. This project could result in state-of-the-art comfort distribution systems, as well as a thermal comfort metric that helps builders and HVAC contractors measure and communicate the value of improved comfort delivery systems.
Project Abstract
The University of Florida will develop a technology for compact, low-cost combined water heating, dehumidification, and space cooling. This technology has the potential to save 480 TBtu/year in water heating and an additional 135 TBtu/year by reducing the air conditioning load.
Project Abstract
Home Innovation Research Labs, Inc. will work to make the extended plate and beam system of incorporating insulation more accessible to builders through demonstration projects, technical documents, and code compliance assistance. Findings from these activities could play a critical role in improving the efficiency of home heating and cooling, which typically account for 40% of a home's energy consumption.
Project Abstract
The Industrial Science & Technology Network, Inc. will develop an environmentally clean, cost-effective building insulation with superior performance. Commercialization of this technology would reduce U.S. energy consumption related to building envelope components by 7%, equal to $8 billion in annual economic savings.
Project Abstract
Lawrence Berkeley National Laboratory will identify an alternative method to estimate two difficult-to-measure inputs used in building energy modeling. The end product will simplify and help automate the process of creating a calibrated model for existing buildings.
Project Abstract
This proposal responds to BPA TIFO Interest Area 7, Cold Climate Heat Pump Water Heaters (HPWH). We propose to develop and demonstrate a novel integrated HPWH customized for demand response (DR) and efficient operation in cold climate homes.
Project Abstract
Seventhwave's Accelerate Performance scales owner demand for energy performance at a cost comparable to current construction by eliminating key market bariers. This program will achieve an average of 50% realized savings compared to traditional 30% modeled savings for aggressive new construction projects.
Project Abstract
Argonne National Laboratory will develop an acoustic method of measuring the infiltration of a building envelope. The method will enable infiltration measurement of all buildings, which could lead to decreased building energy use.
Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract

This project deploys APMD technology over a large sample size, at approximately 55,000 computer workstations at several Community Colleges, and focuses on integrating the technology with facility operations to ensure that they meet the needs of the sites and staff. Key features of the proposed project include outreach and individual education programs to California Community College Districts, evaluation of sites for participation in the project, purchase and installation of APMDs at approved sites, measurement and verification (M&V) activities both pre- and post-APMD implementation at the selected demonstration sites, and stakeholder satisfaction information from demonstration facilities staff and APMD end-users through interviews and surveys.

Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
The University of Minnesota will field test an innovative insulated solid-panel building envelope system that (1) eliminates thermal bridging, improves durability, and reduces construction costs compared to conventional, wood-framed construction; and (2) is appropriate for the affordable housing market.
Project Abstract
Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.
Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract
The objective of this project to develop and commercialize white and amber OLED lighting solutions that are uniquely tailored to the health care industry, ranging from hospital to senior assisted living centers. This project will include five main deliverables: 1) Voice of customer (VOC) exploration with hospital and healthcare personnel including nurses, facilities and other medical staff to identify lighting applications in which OLED would provide unique value. 2) Tuning amber OLED panels, if necessary for large scale production specifically for healthcare, 3) Designing and fabricating OLED fixture prototypes based on VOC 4) obtaining feedback from medical staff on prototypes including performance and effects on workflow, patients or other concerns and define launch product 5) establishing path for full commercialization of product(s).
Project Abstract
The National Trust for Historic Preservation will provide low-cost energy efficiency services to small businesses in California, Wisconsin, New York, and Washington State. These efforts aim to increase small business participation in energy retrofit programs and could lead to up to $30 billion in annual energy savings.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract
NYSERDA has been a strong supporter of ASSIST since its inception in 2002. This has helped New York State to remain on the cutting edge of this quickly advancing technology. To continue to help to prepare New York State manufacturers, consumers, lighting specifiers and decision-makers for the solid-state lighting market, the LRC is seeking to continue NYSERDA's membership in ASSIST and is seeking funding from NYSERDA to support the continued development of metrics and standardized measurement methods for LEDs, LED systems, and LED luminaires.