Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 4 of 4

Project Abstract

Sunthru will establish the fabrication process variables (e.g., pressures and temperatures) for producing small scale samples with the RSCE method. These measurements will be used to establish the process variable to make 8'x8'x0.5' and 10'x10'x0.5' aerogel monoliths. The large scale monoliths will be used to construct prototype insulated glass units for testing Sunthru's ultimate product.

Project Abstract
Vertex Companies investigated the commercial usefulness of LIPA tracer gas technology in providing a quantitative assessment of air distribution in buildings. The LIPA System's capability to track indoor to outdoor, within zone and between zone air distributions was also be evaluated. The use of the LIPA System as a real-time, quantitative instrumental detection with a hand-portable device was also confirmed.
Project Abstract
Newport Ventures will evaluate the potential to make metal buildings more energy efficient by researching the market for a high R-value vacuum insulation product adhered to metal wall or roof panels. Newport Ventures, NanoPore (a MAI manufacturer),and Oak Ridge National Laboratory will investigate promising applications and possible manufacturers identified by the Metal Buildings Manufacturer Association (MBMA) and other relevant industry associations across NYS. Research will be conducted with respect to the optimum profile of the metal panel, method and material for adhesion, edge and seam detailing, fastening method, and trim pieces.
Project Abstract
This project involved researching the feasibility of commercial "humidity sponges", which could help even out daily and multi-day fluctuations of relative humidity in building spaces. This proof of concept study investigated the wicking and water vapor transfer properties of several materials, in addition to the topology and material properties of the structures termites use to manage humidity in their colonies. The project completed with a market analysis, in order to better understand the marketplace for passive or transient building controls in the energy-efficient dehumidification market space.