Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 11 of 11

Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract
Does the combination of high use alerts and e-mail messages produce higher energy savings over just the home energy reports (HERs)? We would like to understand the level of effort it takes to launch this type of project. Cowlitz PUD in conjunction with O Power is conducting research to determine the incremental energy saving impact of an Advanced Digital Feedback and Communication Campaign in addition to O Power's Home Energy Reporting Program. Cowlitz will send 25,000 Home Energy Reports (HERs) to their customers while engaging 12,500 of them through an Advanced Digital Campaign using high use alerts and e-mail messaging. The HERs program uses billing data, census data, and other information to create a neighbor-to-neighbor billing comparison to try and change human behavior resulting in kilowatt hours saved. The hypothesis is that the customer will be moved to use less energy, operate their home more efficiently or to make no-cost, low-cost, or deemed measure changes in their home if they can compare their use with like customers. The Advanced Digital Campaign is experimental. Cowlitz is one of just a few utilities testing this approach. Research results will be available in August of 2013. Improvement over previous research: Cowlitz has advanced metering infrastructure (AMI) and will be able to provide 24-hour interval data making this the first time in the Northwest that HERs has been combined with interval data.
Project Abstract
Does the combination of the O Power's Home Energy Reports (HERs) and the Social Energy social media application create incremental energy savings impacts? This project seeks to determine the incremental energy saving impact of Social Energyan energy efficiency social media application. Social Energy enables users to compare their energy use to a self-defined group. This Social Energy Campaign is experimental. Clark is one of a few utilities testing this approach. This study will combine the Social Energy media application along with O Power's Home Energy Reporting Program. Clark will send Home Energy Reports (HERs) to 20,000 customers while engaging 10,000 of these customer through Social Energy. This application will allow Clark's customers to create their own online efficiency communities. The project has been implemented, evaluation program done during 2014 to understand the program's impact on energy savings. Improvement on previous work: Testing this application with a smaller NW utility and understanding what level of effort is involved in launching this type of program as well as determining the savings impact.
Project Abstract
The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.
Project Abstract
This project is intended to inform both utilities and the public of the potential energy saving benefits of smart thermostats. For utilities, it may provide a measure of how these thermostats fit into their programs and how customers use them to enable energy or demand savings. Utilities will get an opportunity to gauge cost-effectiveness of energy efficiency programs for smart thermostats. Demand response from residential air-conditioners has been a target of many utility programs, but the cost of installation of load control devices and the resulting perceived compromise in customer comfort have been large barriers.
Project Abstract
The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layouts. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions. To begin the project, the LRC will specify a lighting control system capable of operating four integral LED suspended luminaires. The controls manufacturers selected will be CREE, Wattstopper, and Lutron. The LRC will also order eight integral LED luminaires (four luminaires from CREE Lighting with 0-10V drivers and step-dimming drivers that are used with the fixture integrated lighting sensors and four from Lithonia Lighting with 0-10V drivers). Six luminaire control system combinations will be evaluated in this project.
Project Abstract
Smart Residential Thermostats Pilot with Franklin PUD. In partnership with Franklin PUD, BPA is conducting a Nest Learning ThermostatTM field pilot study. One hundred seventy three (173) thermostats were installed with the goal of evaluating the thermostats ability to control Residential Air Source Heat Pump operation and realize electricity savings through a pre/post utility billing regressions analysis study. Metering devices were installed in 9 homes to better understand how the Nest Thermostats control the heat pump systems and how people are interacting with these devices. Study results will be available mid year 2016.
Project Abstract
Will proven strategies from residential behavioral programs provide savings in a small commercial application? Snohomish County Public Utility District's pilot will test behavior change in the commercial sector. A solution for this sector would be highly attractive to utilities with small commercial facility end users, which represent a significant untapped energy savings resource with unique barriers to participation in behavior change programs. The pilot project is a joint venture between Snohomish County Public Utility District, PECI, Lucid, and Starbucks. The pilot will be implemented at several Puget Sound area Starbucks stores and involves providing staff with frequent energy use data and between-store competitions. If successful, the approach could be scaled to similar facilities across the region. Starbucks has over 700 stores in Washington, Oregon, Idaho, and Montana. Improvement on previous work: Very little work has been done in the small commercial arena and no pilots have been done with a large chain, such as Starbucks.
Project Abstract
This data gathering and analysis project will develop reliable estimates of energy savings for Networked Lighting Controls (NLC) project and on a larger scale, accelerate the deployment and market adoption of NLC in Commercial Buildings. Advanced Lighting Controls has significant potential to accelerate LED lighting adoption. In a recent study by LBNL, multiple lighting control strategies saved an average of 38% of energy savings. However, market adoption on NLC/Advance Lighting Controls is estimated to be less then 1%. This project is designed to help BPA determine appropriate program designs, incentives, training and Qualified Products to increase deployment of NLC. The project will request data from several utilities including BPA about energy savings achieved in recent projects. BPA is partnering with Efficiency Forward (formerly DLC) to complete this project.