Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 25 of 64

Project Abstract
This proposal responds to BPA TIFO Interest Area 7, Cold Climate Heat Pump Water Heaters (HPWH). We propose to develop and demonstrate a novel integrated HPWH customized for demand response (DR) and efficient operation in cold climate homes.
Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.
Project Abstract
Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.
Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
This project is a controlled field study and lab test that assessed the demand response (DR) potential of split system and unitary heat pump water heaters (HPWHs) that use carbon dioxide (CO2) refrigerant. The researchers included Washington State University (WSU), Pacific Northwest National Laboratory (PNNL), Efficiency Solutions, and Ecotope working with Cascade Engineering Services.
Project Abstract
Optimize heat pump water heater (HPWH) next generation project for both EE and DR. The major objectives of the project are: 1. Demonstrate and quantify the energy performance of the prototype GE Brillion GeoSpring Hybrid Water Heater with and without exhaust air ducting over heating and cooling conditions in the lab homes 2. Evaluate or quantify the potential for the GE smart grid-enabled HPWH to provide demand response (to both increase/absorb [INC] and decrease/shed/shift [DEC] load) under various price signals sent to the unit. In addition, the proposed project will provide GE information to determine and design the optimal ducting configurations for their unit should they decide to offer this feature as an option for this new-to-the-market unit.
Project Abstract
The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.
Project Abstract
The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.
Project Abstract
Working with project partners from the Seattle Lighting Design Laboratory, the Lighting Research Center (LRC) will identify a suitable outdoor lighting installation in a parking lot and conduct evaluations of energy and power use, visual responses of people in and approaching the outdoor location, and subjective ratings of safety and personal security while viewing and occupying the location. The design of the lighting installation will utilize published research on the spectral sensitivity of the human visual system for scene brightness perception and on the relationships between scene brightness and perception of safety and security previously published by the LRC project team. The proposed project will consist of a full-scale outdoor lighting demonstration at a parking lot facility within BPA service territory. The demonstration will be based on a proposed specification method for maximizing perceptions of safety and security of occupants, taking advantage of the differential spectral (color) sensitivity of the human visual system for brightness perception at nighttime light levels. Sensations of brightness are in turn strongly related to perceptions of personal safety and security in outdoor locations. It is anticipated that using white light sources such as a lighting emitting diode (LED) illumination in place of conventional high pressure sodium (HPS) illumination energy savings of 40-50% will be possible while maintaining perceptions of brightness, safety, and security.
Project Abstract
Multifamily (MF) is hugely underserved in Residential energy efficiency (EE) Programs and part of our MF ductless heat pump (DHP) strategy is to look at different MF use cases and identify which MF use cases provide a higher EE potential. So far DHP results in MF are mixed and this project will assess the energy use and savings of ductless heat pumps in mid-rise MF buildings. This study offers a unique opportunity for a side by side comparison of heat pumps and electric resistance heat within a single apartment building with 278 apartments. The project would collect billing data on all the individual units, conduct an analysis to disaggregate heating, cooling, and baseload energy use, and compare the two types of heating systems.
Project Abstract
Seven alternative ductless heat pump (DHP) solutions were identified during the 2014 Washington State University (WSU) Assessment Study, including multiple internal heads, ducting between rooms, etc. Two solutions were recommended for further research. Technology and research plans need to be developed for these alternatives. Research plans will need to be developed for this project.
Project Abstract
The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.
Project Abstract
The 7th Power Plan has targeted 261aMWs of savings for embedded data centers and BPA would like to develop a series of new measures to acquire these savings. Embedded Data Centers are defined as server rooms located on-site in commercial buildings which are larger than server closets but smaller than enterprise data centers. This project will inform and streamline custom projects for future Data Center Air Flow Management retrofits which may include multiple data center HVAC retrofits, including blanking panels, raising space temperatures, containment and air flow management. Up to two grants will be awarded to participate in this field study to test Data Center Air Flow Management retrofits and other HVAC solutions for Embedded Data Centers. This field study will also demonstrate and verify a Data Center Air Flow Management (AFM) energy savings calculator developed by Seattle City Light in the Data Center Track and Tune Project.
Project Abstract
Optimize heat pump water heater (HPWH) next generation project for both energy efficiency (EE) and demand response (DR). In recent years, heat pump water heaters have reemerged as a potentially high impact energy efficient technology. Hybrid heat pump water heaters have been shown by the Electric Power Research Institute (EPRI) to provide high efficiency electric water heating. The EPRI Energy Efficiency Demonstration has shown energy savings of 20-40% over conventional water heaters in preliminary analysis. The project will address: the feasibility of variable speed compressors to eliminate electric resistance backup; alternative refrigerants and system configurations; demand response and ancillary service opportunities and strategies, and whole building impacts of heat pump water heater systems.
Project Abstract
This project will apply the framework created in the prior research to develop early deployment plans for three additional technologies and to guide early deployments with multiple utilities for five technologies, two of which were planned in prior research. The three technologies being deployed are heat pump water heaters, led menu boards, and engine generator block heaters.
Project Abstract
This project is intended to inform both utilities and the public of the potential energy saving benefits of smart thermostats. For utilities, it may provide a measure of how these thermostats fit into their programs and how customers use them to enable energy or demand savings. Utilities will get an opportunity to gauge cost-effectiveness of energy efficiency programs for smart thermostats. Demand response from residential air-conditioners has been a target of many utility programs, but the cost of installation of load control devices and the resulting perceived compromise in customer comfort have been large barriers.
Project Abstract
The goal of this research project is to determine if it is possible to pre-heat water for swimming pools to save energy. The study is designed to show the efficacy of this application as well as the associated energy savings. In 2016, BPA engineering collected baseline operation data on the existing electric resistance water heater for a residential swimming pool. Early in 2017, the CO2HPWH was installed and monitored. The initial results showed that the system was under performing and a number of modifications are being considered. The current plan is to implement the modifications and monitor the new design through December 2017 to allow for warm and cold weather operation. A final paper will be prepared by February 2018. While this study is focused on the residential sector, the nature and results of this study are also applicable to water heating EE projects in the commercial sector. BPA will generate a summary brief which will inform the region of the results. Its important to build the body of knowledge for CO2 heat pumps and demonstrate the efficacy of a new use case.
Project Abstract
This supplemental project has been designed to provide utilities a means of working together in a coordinated fashion to test this concept in field environments. The goals of this supplemental project are: 1. To prove the performance of universal Consumer Electronics Association (CEA) 2045 communications port (comm port) 2. Convince manufacturers that the installation of a simple comm port is very low-cost, and makes their equipment easy to incorporate into any utility demand response (DR) program nationwide so that it could eventually become standard practice on all water heaters. If that can be achieved, then the question of whether or not a customer participates in a utility DR program becomes a simpler customer choice.
Project Abstract
Heating water for commercial is identified in the 7th Power Plan as desired measures. The goal of this project is to fund the design, installation, commissioning and warranty of a large commercial heat pump water heater (HPWHs) as an Emerging Technology Field Test. BPA will award fund utility grants to design, install and commissioning the unit, meter energy usage and provide data to BPA for further analyses. Each utility will also provide results regarding the design, installation, and commissioning of the unit which will be shared publically