Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 376 - 400 of 440

Project Abstract
This project developed a retrofit energy toolkit for SMB and demonstrated the Toolkit's capabilities on three to four building test sites. The project obtained input from stakeholders on retrofit packages, compiled utility smart-meter data and developed a load shape analysis module. The project also looked at the indoor environmental quality effects on retrofitted small office and retail buildings, and developed a comprehensive web-based retrofit tool for business owners and energy professionals.
Project Abstract
Ecology Action of Santa Cruz will develop a platform for energy efficiency program administrators that offers a comprehensive set of energy-saving measures, integrated financing tools, and expedited project measurement and verification via a contractor-driven delivery model. The platform seeks to average at least 20% energy savings per building.
Project Abstract
BPA is working with NEEA to install indoor temperature loggers in 200 single family homes in the upcoming Residential Building Stock Assessments (RBSA) to collect indoor air temperature (IAT) data from (RBSA) homes during the next study period. This IAT data is needed to help establish required baselines for the Smart Thermostat measure initiatives. Installations will start in July 2016 and run through July 2017. Loggers will be collected after 9 months of data collection and analyses will begin. Interim results will be available starting September 2017.
Project Abstract
Smart Residential Thermostats Pilot with Franklin PUD. In partnership with Franklin PUD, BPA is conducting a Nest Learning ThermostatTM field pilot study. One hundred seventy three (173) thermostats were installed with the goal of evaluating the thermostats ability to control Residential Air Source Heat Pump operation and realize electricity savings through a pre/post utility billing regressions analysis study. Metering devices were installed in 9 homes to better understand how the Nest Thermostats control the heat pump systems and how people are interacting with these devices. Study results will be available mid year 2016.
Project Abstract
To reduce energy use in homes that are becoming tighter, mechanical ventilation is added to maintain Indoor Air Quality (IAQ). Smart ventilation technologies are being developed to minimize the energy impact of mechanical ventilation while simultaneously maintaining IAQ. This project will demonstrate the energy savings associated with a smart ventilation technology through a combination of field testing and simulations. The target is to get close to heat recovery ventilation (HRV) performance at much lower cost and complexity; and greater reliability through smart control of simple exhaust (or supply) fans. The project will also develop recommendations for utility programs, other energy efficiency programs and for codes/standards on how to calculate credits for smart ventilation systems.
Project Abstract
Will proven strategies from residential behavioral programs provide savings in a small commercial application? Snohomish County Public Utility District's pilot will test behavior change in the commercial sector. A solution for this sector would be highly attractive to utilities with small commercial facility end users, which represent a significant untapped energy savings resource with unique barriers to participation in behavior change programs. The pilot project is a joint venture between Snohomish County Public Utility District, PECI, Lucid, and Starbucks. The pilot will be implemented at several Puget Sound area Starbucks stores and involves providing staff with frequent energy use data and between-store competitions. If successful, the approach could be scaled to similar facilities across the region. Starbucks has over 700 stores in Washington, Oregon, Idaho, and Montana. Improvement on previous work: Very little work has been done in the small commercial arena and no pilots have been done with a large chain, such as Starbucks.
Project Abstract
The Los Angeles Cleantech Incubator will accelerate the market adoption of super-efficient building technologies by creating a replicable transparent process for taking technologies from pilot to portfolio. The project will measure, document, and publicize the results of highly energy-efficient technology pilot demonstration projects, as well as help property owners define clear metrics to scale up projects.
Project Abstract

Increasing the albedo (solar reflectance) of a building's envelope reduces solar heat gain in the cooling season. Raising envelope albedo can also cool the outside air, boosting energy savings and demand reduction by decreasing the air temperature difference across the building envelope. Lowering urban surface and air temperatures improves air quality by slowing the reactions that produce smog, and delays global warming through negative radiative forcing ("global cooling"). Current data are insufficient to accurately predict savings impacts for different cool wall materials; which prevents cool wall technology from being included in building standards or utility rebate programs.

Project Abstract
Activities under this project will advance the development and market readiness of Vital Vio lighting products. These activities include characterization and optimization of Vital Vios current prototypes, full scale design concepts, LED module requirements including design and thermal analysis, LED module for incorporation into final fixture designs, various testing and certifications, and pilot implementations.
Project Abstract
Lime Energy and partners will implement an energy efficiency service delivery model for small and medium size businesses in low-income communities, aiming to complete more than 1,000 retrofits featuring a performance guarantee and meter-validated savings. The results will create 60 jobs and generate $30 million in economic activity.
Project Abstract
HPC will support the Home Performance with ENERGY STAR Program (HPwES) to engage with stakeholders at regional and national conferences through structured meetings and recognition opportunities; provide business administration, marketing and sales training specific to the home performance industry to program administrator staff and participating contractors; and conduct outreach and develop infrastructure sufficient to increase the number of programs and other market actors that utilize the Building Performance Institutes data collection and transfer standards collectively known as HPXML.
Project Abstract
Glint Photonics will develop a stationary, roof-mounted concentrator daylighting system that uses internal optics to track the sun without external movement. This daylighting system will offset 40%-70% of the buildings electricity used for lighting and could potentially generate a total impact of 0.93 quads by 2030.
Project Abstract
Home Innovation Research Labs will establish performance criteria and conduct comprehensive testing to evaluate the structural performance of continuous insulation walls with windows of varying shapes and sizes, insulation thicknesses, and installation methods.
Project Abstract
Steven Winter Associates will develop and test methods for estimating the savings potential for partially or fully sealing these opening using tools common to energy auditors. The costs and benefits of best practice approaches for reducing energy losses through elevator and stairwell vents will be determined. A technical report will also be prepared for building owners, coop board of directors and energy auditors.
Project Abstract
This data gathering and analysis project will develop reliable estimates of energy savings for Networked Lighting Controls (NLC) project and on a larger scale, accelerate the deployment and market adoption of NLC in Commercial Buildings. Advanced Lighting Controls has significant potential to accelerate LED lighting adoption. In a recent study by LBNL, multiple lighting control strategies saved an average of 38% of energy savings. However, market adoption on NLC/Advance Lighting Controls is estimated to be less then 1%. This project is designed to help BPA determine appropriate program designs, incentives, training and Qualified Products to increase deployment of NLC. The project will request data from several utilities including BPA about energy savings achieved in recent projects. BPA is partnering with Efficiency Forward (formerly DLC) to complete this project.
Project Abstract
The goal of this project is to further understanding of the energy saving potential of ducted minisplit heat pumps (DMS) compared to electric resistance heat in the side by side PNNL Lab Homes. This project will provide an experimental plan to evaluate the performance of ducted mini-splits. PNNL will review the current lab and field testing on ducted minisplits to determine the most relevant test case scenarios for this technology and develop an experimental plan to test ducted minisplits in the PNNL Lab Homes, using electric resistance heat and a heat pump as the two baseline cases. As part of the plan, PNNL will identify data needed to develop an EnergyPlus model for ducted minisplits in the Lab Homes which would allow for extrapolation of the energy savings of this technology to other climates or other buildings. If needed, In a second phase of the project, PNNL will implement the experimental plan in the Lab Homes.
Project Abstract
RTI International will develop and validate a reliability model and accelerated life testing methodologies to predict the lifetime of integrated solid-state lighting luminaires. By improving testing methods, this project will give additional product information to manufacturers and SSL users who seek to justify higher first cost for SSL products over less efficient lighting technologies.
Project Abstract
The objective of the research is to test the energy performance and demand reduction capabilities of the high-efficiency cellular shading devices and associated automated control strategies in the PNNL matched pair of laboratory homes. Tests outcomes will measure the cost-effective materials for existing homes. examine persistence of savings through Automated Operation of Dynamic Systems, and examine the benefits to of coordinating Cellular Shades with HVAC Demand-Response Events.
Project Abstract
The research goals of the project will to identify what types of systems would provide the best baseline data for the Pacific NW (PNW). Utilizing a new portable metering system that can measure temperatures, pressures, true power, heat load, and Energy Efficiency Ratio (EER) of Commercial Refrigeration, units will be installed at four different grocery stores. Sites will be selected that would be open to a large scale energy conservation project that modifies the refrigeration system. The portable Climacheck systems will remain in place a full year after the project to study the effect on the new system and quantify energy savings. After 1 year of post project data collection, the Climacheck systems may be moved around more frequently to collect shorter-term period (three, six, or nine month) data on additional sites and system types.