Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 51 - 75 of 108

Project Abstract
QM Power, Inc. will develop advanced HVAC motors that are significantly more efficient and cheaper than current solutions for almost all electric motor compressor and fan applications. The technology will have the potential to save more than 0.62 quads of energy.
Project Abstract
The Home Improvement Catalyst (HI Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The Home Improvement Catalyst is designed to identify the multiple pathways to achieving an energy efficient home through energy upgrades and speed the adoption of market-ready energy improvements; resulting in greater energy savings over time.
Project Abstract
Throughout the development of the AVS resources and meta-analysis, HI Cat will conduct outreach to EPA, utilities, CEE, REEOs, and program implementers seeking to advance programs that advance high performance HVAC and QI practices. DOE is partnering with MEEA to collect data and evaluate the HVAC SAVE program (Iowa), test approaches to offering additional services, and develop a case study of the HVAC SAVE program in Iowa.
Project Abstract
This project will combine electrochemical compression technology with ionic liquid desiccant to provide the most efficient means of managing latent and sensible heat loads in air-conditioning (AC) systems. This technology replaces the standard mechanical compressor commonly found today in AC systems with an electrochemical compressor that utilizes fuel cell technology to enable efficient heat pump systems.
Project Abstract
With a focus on typical business as usual HVAC trade practices, HI Cat seeks to capture greater efficiency at high volume within the home improvement transactions at key decision points. HI Cat will work in partnership with industry to design contractor ready resources via development of a Sequencing Tool that curates advisory content that can be applied during the sales transaction. The sequencing tool, designed for use by trade contractors, will identify opportunities to improve upon the current transaction in any given scenario, without disrupting it. Related resources, such as a contractor playbook, will provide ing relevant sales tools and tips; selection, specification, and field installation guidance; proposal and contract language; etc. It will also offer messaging about the energy efficiency pathway or customer journey, reference applicable DOE and industry technical standards/guidance and provide technical information to address follow on EE opportunities.
Project Abstract
the University of Miami, in partnership with Schneider Electric and Lawrence Berkeley National Laboratory, will create a tool for dynamic cooling and airflow optimization that is customized for the design and operational requirements of data centers and computer rooms by integrating several open-source modeling packages: the Modeling Buildings Library/Spawn-of-EnergyPlus for flexible IT equipment and cooling system modeling; LBNLs GenOpt for optimization; and the University of Miamis Fast Fluid Dynamics package for airflow modeling.
Project Abstract
The proposer seeks to assess the prevalence of different space heating systems and the efficacy of known measures that address their most common inefficiencies. The proposer will convene an advisory panel, assess the scope of steam heat as a problem in New York as well as existing measures, and conduct a cost-benefit and impact analysis. The project will complete with the development of proposals for policymakers, industry customers, and potential training programs.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project focuses on establishing a framework and identifying priority R&D needs for coordination with industry, Emerging Technology and market deployment programs. PNNL will develop a white paper evaluating the state of the art of commercially available sensors and controls technology for operations, maintenance, and commissioning applications in residential HVAC. This work assesses technology gaps and market needs, and provides clear recommendations for government action and industry involvement in advancing sensors, controls, diagnostics, and automated fault correction. The task will explore opportunities for industry engagement to gain feedback on report findings, better identify industry development plans, and focus BA/BTO investments.
Project Abstract
Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps DHPs with back up resistance heating. This research project will utilize the Pacific Northwest National Laboratory (PNNL) Lab Homes to test how the performance of a multi-zone ducted mini split application compares to the traditional single zone DHP with back up resistance heat in a single family application. The PNNL Lab homes provide the opportunity to conduct a side by side experiment with identical homes. Results of this research will determine if BPA should pursue additional field tests.
Project Abstract
Unilux Advanced Manufacturing, LLC is a Schenectady, NY based corporation that is engaged in the design, evaluation, manufacture, and commercial distribution of high performance large scale boilers. Unilux currently has built and partially tested a 10 MMBTU prototype large scale condensing boiler (LSCB) with an anticipated efficiency of 96% compared to a conventional boiler efficiency of 81%. An 8-20 MMBTU LSCB would be appropriately sized for large facilities such as public schools, universities, state owned buildings, hospitals, and hotels.
Project Abstract
Steven Winter Associates (SWA) will conduct the retrofit installation and commissioning of (2) steam boiler burners with linkageless burner controls at demonstration sites in NYC. The project will use remotely monitored measurement and verification equipment to provide data collection of the systems pre and post- retrofit. SWA will oversee the installation and commissioning of the systems to ensure optimization of energy performance at demonstration sites. SWA will then develop a best practices strategy for the retrofitting process and the collected data will be analyzed for cost analysis, energy savings, metrics, and payback over both heating and non-heating seasons. The results of the project will be shared with building owners, management firms, building operators, and representatives from municipal and state organizations who are responsible for the evaluation of boiler upgrades in their respective organizations.
Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
Stone Mountain Technologies will build and test a low-cost gas heat pump that is optimized for heating-dominated climates. The technology will reduce heating costs by 30% - 45% compared to conventional gas furnaces and boilers.
Project Abstract
Mechanical Solutions, Inc. will develop a residential HVAC system featuring a highly efficient small centrifugal compressor. This project could provide a cheaper, more efficient, more environmentally friendly HVAC option for residential and commercial buildings.
Project Abstract
Gas Technology Institute will develop and conduct advanced modeling of the GHP system in order to provide a detailed assessment of the technology using regional weather data and detailed utility information for several New York locations and building types. The project will include a market assessment of the competitiveness of the variable refrigerant volume (VRV) GHP, including energy and economic benefits, the value of resiliency, and the value of self-powered heating and cooling systems for customers in New York. The Proposer will take into account the energy savings, operating costs, lifecycle costs, and greenhouse gas emissions in order to determine any energy, economic, or environmental merits of GHPs over standard HVAC equipment
Project Abstract
The Contractor seeks to baseline test, install, and evaluate the performance of a 21kW micro-CHP system, that provides hot water and power as a packaged unit, at (2) Host Sites in NY. The proposed System shall feature a synchronous generator and black-start capability. The goal of the project is to provide manufacturers, building owners, and installers information regarding the deployment of micro-CHP systems, in order to promote a sustainable market for micro-CHP systems in NY. Once the Host Sites are selected, the System shall be independently tested and configured and the Host Sites shall be prepared for the proper integration of the Systems on-site. The Systems shall be installed and monitored for 12 months before developing a report to disseminate to the stakeholders.
Project Abstract
This project uses modeling to analyze peak energy demand, and indoor air quality advantages of controlled minimum ventilation rates (VR); evaluates multiple technologies applicable to real-time measurement and control of ventilation rates; and uses the results to develop occupancy specific guidelines for using carbon dioxide (CO2) in demand controlled ventilation systems and for measurement of ventilation rates.
Project Abstract
Oak Ridge National Laboratory (ORNL) will investigate a novel dehumidification process to avoid the excessive energy utilized by conventional approaches, through high-frequency mechanical vibration of ultrasonic transducers to eject adsorbed water in a liquid form.