Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 151 - 200 of 323

Project Abstract
Lumileds, LLC will develop an LED light engine that integrates a new low-cost, high-power chip and optimized drivers. This light engine will enable comprehensive luminaire system cost reduction.
Project Abstract
QM Power, Inc. will develop advanced HVAC motors that are significantly more efficient and cheaper than current solutions for almost all electric motor compressor and fan applications. The technology will have the potential to save more than 0.62 quads of energy.
Project Abstract
GE Global Research will build a scalable, efficient, modular luminaire to address the integration of driver, optics, and package in a flexible integration platform that allows for simplified manufacturing to customized performance specifications.
Project Abstract
In this project, National Renewable Energy Laboratory (NREL) will partner with Robert Bosch, LLC and Colorado State University to develop and demonstrate a novel technology package which can overcome numerous adoption barriers and achieve energy savings as well as providing flexible demand-side management including demand response. The full scope of this project is to develop and demonstrate an innovative Home Battery System which provides electric energy storage and conversion, along with self-learning adaptive control signal outputs for appliances and reliable predictions for residential demand response. The team will develop and perform preliminary validation of customer identification program (CIP) requirements on the Home Battery System. The work will results in improved understanding of the system performance and cost tradeoffs. The project will make substantial progress toward a marketable product but may not result in a market-ready Home Battery System product.
Project Abstract
The Home Improvement Catalyst (HI Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The Home Improvement Catalyst is designed to identify the multiple pathways to achieving an energy efficient home through energy upgrades and speed the adoption of market-ready energy improvements; resulting in greater energy savings over time.
Project Abstract
Carnegie Mellon University will design, implement, and evaluate a human-in-the-loop sensing and control system for energy efficiency of heating, ventilation, air conditioning (HVAC), and lighting systems based on a novel occupancy sensor. Through occupant sensing and real-time data collection, this project will reduce energy waste, targeting a 20% energy savings, while increasing occupant comfort by accurately estimating occupants in an area to overcome current HVAC system operations.
Project Abstract
Throughout the development of the AVS resources and meta-analysis, HI Cat will conduct outreach to EPA, utilities, CEE, REEOs, and program implementers seeking to advance programs that advance high performance HVAC and QI practices. DOE is partnering with MEEA to collect data and evaluate the HVAC SAVE program (Iowa), test approaches to offering additional services, and develop a case study of the HVAC SAVE program in Iowa.
Project Abstract
This project will combine electrochemical compression technology with ionic liquid desiccant to provide the most efficient means of managing latent and sensible heat loads in air-conditioning (AC) systems. This technology replaces the standard mechanical compressor commonly found today in AC systems with an electrochemical compressor that utilizes fuel cell technology to enable efficient heat pump systems.
Project Abstract
With a focus on typical business as usual HVAC trade practices, HI Cat seeks to capture greater efficiency at high volume within the home improvement transactions at key decision points. HI Cat will work in partnership with industry to design contractor ready resources via development of a Sequencing Tool that curates advisory content that can be applied during the sales transaction. The sequencing tool, designed for use by trade contractors, will identify opportunities to improve upon the current transaction in any given scenario, without disrupting it. Related resources, such as a contractor playbook, will provide ing relevant sales tools and tips; selection, specification, and field installation guidance; proposal and contract language; etc. It will also offer messaging about the energy efficiency pathway or customer journey, reference applicable DOE and industry technical standards/guidance and provide technical information to address follow on EE opportunities.
Project Abstract
This project will improve the external quantum efficiency (EQE) of amber and red aluminium gallium indium phosphide (AlGaInP)-based LEDs by developing strain-engineered cladding layers to provide enhanced carrier confinement.
Project Abstract
the University of Miami, in partnership with Schneider Electric and Lawrence Berkeley National Laboratory, will create a tool for dynamic cooling and airflow optimization that is customized for the design and operational requirements of data centers and computer rooms by integrating several open-source modeling packages: the Modeling Buildings Library/Spawn-of-EnergyPlus for flexible IT equipment and cooling system modeling; LBNLs GenOpt for optimization; and the University of Miamis Fast Fluid Dynamics package for airflow modeling.
Project Abstract
The proposer seeks to assess the prevalence of different space heating systems and the efficacy of known measures that address their most common inefficiencies. The proposer will convene an advisory panel, assess the scope of steam heat as a problem in New York as well as existing measures, and conduct a cost-benefit and impact analysis. The project will complete with the development of proposals for policymakers, industry customers, and potential training programs.
Project Abstract
Pacific Northwest National Laboratory (PNNL) has just completed extensive research to determine energy efficiency savings for storm windows. The goal of this project is to obtain residential and possible commercial Unit Energy Savings (UES) measure approval from the Regional Technical Forum (RTF) for interior and exterior low-e storm windows. This work will create the (Simplified Energy Enthalpy Model) SEEM workbook and ProCost model to inform regional savings and cost-effectiveness assumptions, presentation of these data to the RTF in collaboration with RTF staff, and associated documentation.
Project Abstract
The project will study the integration trade-offs, cost and energy optimization of daylighting, LED electric lighting, plug load sensors and zonal air plow controls. If widely adopted, the integrated controls package in this project could have savings up to 750 Tbtu per year.
Project Abstract
This agreement develops a new tool that integrates moisture and thermal analysis. By integrating these two properties the optimal strategies can be determined for improving envelope design for new construction and retrofit applications.This agreement provides building professionals with a user-friendly engineering software tool at no cost.
Project Abstract
Sinovia Technologies will combine a barrier film technology with a nanowire transparent conduction film to make a single substrate product for OLED lighting. This technology will improve the efficiency and lower the cost of OLEDs.
Project Abstract
This project studies the synergistic interactions of daylighting, plug controls, automated fault detection and diagnostics (AFDD) and HVAC optimization. If widely used, the package of daylighting techniques, plug loads, AFDD and controls for HVAC systems validated in this project could have savings of 756 Tbtu per year.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop an optimal system configuration for smart comfort controlled ceiling fans integrated with learning thermostats. This system will be tested and evaluated for energy performance and occupant acceptance in low income multi-family residential and small commercial buildings in disadvantaged communities in California. This research and development will advance the solution's technology readiness level and support market adoption acceleration.
Project Abstract
This project will develop a low cost smart thermostat unit that will have simple user interface. Though the test sites are low-income and senior housing, this technology could be adapted to other residential sectors. The smart thermostat will understand user preferences and manage indoor conditions to optimize energy use without requiring internet connectivity. HVAC energy use can be traced to three factors: losses in the ducting system, substandard equipment efficiency and occupant settings. Low income households are mostly renters which makes changes to the duct system or HVAC unit not feasible. By providing automatically optimized thermostat settings this project will determine if smart thermostats are a cost effective method to address HVAC energy use in the low-income and senior housing sectors.
Project Abstract
This project focuses on establishing a framework and identifying priority R&D needs for coordination with industry, Emerging Technology and market deployment programs. PNNL will develop a white paper evaluating the state of the art of commercially available sensors and controls technology for operations, maintenance, and commissioning applications in residential HVAC. This work assesses technology gaps and market needs, and provides clear recommendations for government action and industry involvement in advancing sensors, controls, diagnostics, and automated fault correction. The task will explore opportunities for industry engagement to gain feedback on report findings, better identify industry development plans, and focus BA/BTO investments.
Project Abstract
This project will attempt to measure the impact of lighting on the users of an outdoor lighting space. The experiments will determine the effects of different lighting types on the melatonin levels of the participants. As different CCT light sources will be used, their differing spectral contents can be evaluated to determine the most appropriate light source for implementation in the outdoor environment.
Project Abstract
Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps DHPs with back up resistance heating. This research project will utilize the Pacific Northwest National Laboratory (PNNL) Lab Homes to test how the performance of a multi-zone ducted mini split application compares to the traditional single zone DHP with back up resistance heat in a single family application. The PNNL Lab homes provide the opportunity to conduct a side by side experiment with identical homes. Results of this research will determine if BPA should pursue additional field tests.
Project Abstract
Unilux Advanced Manufacturing, LLC is a Schenectady, NY based corporation that is engaged in the design, evaluation, manufacture, and commercial distribution of high performance large scale boilers. Unilux currently has built and partially tested a 10 MMBTU prototype large scale condensing boiler (LSCB) with an anticipated efficiency of 96% compared to a conventional boiler efficiency of 81%. An 8-20 MMBTU LSCB would be appropriately sized for large facilities such as public schools, universities, state owned buildings, hospitals, and hotels.
Project Abstract

The project team is demonstrating and validating new retrofit package solutions from laboratory pre-testing through field demonstrations in existing government-owned commercial buildings. The solution sets, dubbed "INTER", are comprised of shading products from Rollease Acmeda and lighting and plug load systems and integrated controls, including HVAC systems, from Enlighted. The technologies can be combined and customized to suit a variety of building types and spaces, resulting in an estimated whole building energy reduction of 20 to 32 percent. Beginning in the Los Angeles basin, the team is leveraging existing market connections to increase and accelerate market adoption of these retrofit solution sets to maximize the potential energy and carbon savings, first in the region and ultimately, throughout California.

Project Abstract
Create a buying guide for someone who wants to purchase an easily commissioned lighting control system. What are some of the main products available, and how do they compare to each other? The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layoutsoffice and high bay. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions.
Project Abstract
The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layouts. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions. To begin the project, the LRC will specify a lighting control system capable of operating four integral LED suspended luminaires. The controls manufacturers selected will be CREE, Wattstopper, and Lutron. The LRC will also order eight integral LED luminaires (four luminaires from CREE Lighting with 0-10V drivers and step-dimming drivers that are used with the fixture integrated lighting sensors and four from Lithonia Lighting with 0-10V drivers). Six luminaire control system combinations will be evaluated in this project.
Project Abstract
The project will develop LED luminaires specifically for three applications: clean rooms, containment areas and surgical suite applications. The LED luminaires will (1) conform to DLC Qualifications and LM79/LM80/IES Handbook guidelines and produce desired levels of glare-free, uniform illumination; (2) maximize energy efficiency, heat dissipation, and integration into modern ceiling structures; and (3) develop new universally accepted standards for evaluation for LED luminaires in clean room applications and validate their performance with respect to leakage and surface contamination. The proposed work includes mechanical/electrical design, prototype creation, component procurement, tooling, production, assembly, field testing, independent lab testing and cost/sell budget development. It also includes market/sales development to create new marketing materials and training of sales force (internal support, traditional distribution and OEM), and creation of a promotional program.
Project Abstract
The goal of the project is to provide background information to support listing mogul based lighting in the Designlights Consortium Qualified Product List to support cost-effective LED retrofits. This phase of the study will identify and document case studies.
Project Abstract
Market characterization and testing of mogul based LED replacement lamps and systems. Goal: background information to support listing in the Designlights Consortium Qualified Product List, to support cost-effective LED retrofits (if the data supports this). Research questions include: Market characterization: what mogul based sockets are in place, by application type and wattage? National scope, for input to DLC process. Market survey: What mogul based LED replacement lamps and kits are available? Literature survey and pilot test: Do they work?
Project Abstract
Steven Winter Associates (SWA) will conduct the retrofit installation and commissioning of (2) steam boiler burners with linkageless burner controls at demonstration sites in NYC. The project will use remotely monitored measurement and verification equipment to provide data collection of the systems pre and post- retrofit. SWA will oversee the installation and commissioning of the systems to ensure optimization of energy performance at demonstration sites. SWA will then develop a best practices strategy for the retrofitting process and the collected data will be analyzed for cost analysis, energy savings, metrics, and payback over both heating and non-heating seasons. The results of the project will be shared with building owners, management firms, building operators, and representatives from municipal and state organizations who are responsible for the evaluation of boiler upgrades in their respective organizations.
Project Abstract
North Carolina State University will develop OLEDs fabricated on low-cost high index corrugated substrates with a semi-random periodicity to give enhancements in extraction efficiency across the entire visible spectrum, due to the extraction of the thin-film-guided and surface-plasmon modes.
Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.
Project Abstract
Stone Mountain Technologies will build and test a low-cost gas heat pump that is optimized for heating-dominated climates. The technology will reduce heating costs by 30% - 45% compared to conventional gas furnaces and boilers.