Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 26 - 45 of 45

Project Abstract
SWA will evaluate the opportunities, savings potential, and limitations of ccASHPs in New York State homes. Improved energy modeling techniques will be developed for various tools. Guidelines will be developed describing ccASHP opportunities in NYS homes, including operating costs, installed costs, climate-dependent factors, low-temperature limitations, integration issues and possible limitations. Guidelines will also be developed for energy modelers to help accurately predict ccASHP performance with common modeling tools.
Project Abstract
Evoworld will complete the necessary development work resulting in a new user interface that provides end-users with a simple layout, quick access to operating data, and appliance performance feedback. Evoworld will also revise their Installation, Maintenance, and Operating manuals. The project will conclude with the development of a commissioning report and installer training curriculum, which should improve the quality of installations of Evoworld products within NYS and elsewhere.
Project Abstract
The objectives of this project are to: 1) Develop, evaluate, and down-select a set of component technologies that will enable highly efficient and uniform large area white OLED lighting panels at low cost, 2) Integrate the selected subset of technology elements to demonstrate the required panel level performance targets of 80 lm/W with 85% brightness uniformity at 2000-3000 cd/m2 for a large area OLED panel at least 100 cm2 in size 3) Demonstrate scalability of the low-cost technologies and 4) Demonstrate an OLED luminaire using the high-performance OLED panels delivering more than 2000 lumens at greater than 65 lm/W.
Project Abstract
The proposer seeks to assess the prevalence of different space heating systems and the efficacy of known measures that address their most common inefficiencies. The proposer will convene an advisory panel, assess the scope of steam heat as a problem in New York as well as existing measures, and conduct a cost-benefit and impact analysis. The project will complete with the development of proposals for policymakers, industry customers, and potential training programs.
Project Abstract
Unilux Advanced Manufacturing, LLC is a Schenectady, NY based corporation that is engaged in the design, evaluation, manufacture, and commercial distribution of high performance large scale boilers. Unilux currently has built and partially tested a 10 MMBTU prototype large scale condensing boiler (LSCB) with an anticipated efficiency of 96% compared to a conventional boiler efficiency of 81%. An 8-20 MMBTU LSCB would be appropriately sized for large facilities such as public schools, universities, state owned buildings, hospitals, and hotels.
Project Abstract
The project will develop LED luminaires specifically for three applications: clean rooms, containment areas and surgical suite applications. The LED luminaires will (1) conform to DLC Qualifications and LM79/LM80/IES Handbook guidelines and produce desired levels of glare-free, uniform illumination; (2) maximize energy efficiency, heat dissipation, and integration into modern ceiling structures; and (3) develop new universally accepted standards for evaluation for LED luminaires in clean room applications and validate their performance with respect to leakage and surface contamination. The proposed work includes mechanical/electrical design, prototype creation, component procurement, tooling, production, assembly, field testing, independent lab testing and cost/sell budget development. It also includes market/sales development to create new marketing materials and training of sales force (internal support, traditional distribution and OEM), and creation of a promotional program.
Project Abstract
Steven Winter Associates (SWA) will conduct the retrofit installation and commissioning of (2) steam boiler burners with linkageless burner controls at demonstration sites in NYC. The project will use remotely monitored measurement and verification equipment to provide data collection of the systems pre and post- retrofit. SWA will oversee the installation and commissioning of the systems to ensure optimization of energy performance at demonstration sites. SWA will then develop a best practices strategy for the retrofitting process and the collected data will be analyzed for cost analysis, energy savings, metrics, and payback over both heating and non-heating seasons. The results of the project will be shared with building owners, management firms, building operators, and representatives from municipal and state organizations who are responsible for the evaluation of boiler upgrades in their respective organizations.
Project Abstract
Gas Technology Institute will develop and conduct advanced modeling of the GHP system in order to provide a detailed assessment of the technology using regional weather data and detailed utility information for several New York locations and building types. The project will include a market assessment of the competitiveness of the variable refrigerant volume (VRV) GHP, including energy and economic benefits, the value of resiliency, and the value of self-powered heating and cooling systems for customers in New York. The Proposer will take into account the energy savings, operating costs, lifecycle costs, and greenhouse gas emissions in order to determine any energy, economic, or environmental merits of GHPs over standard HVAC equipment
Project Abstract
The Contractor seeks to baseline test, install, and evaluate the performance of a 21kW micro-CHP system, that provides hot water and power as a packaged unit, at (2) Host Sites in NY. The proposed System shall feature a synchronous generator and black-start capability. The goal of the project is to provide manufacturers, building owners, and installers information regarding the deployment of micro-CHP systems, in order to promote a sustainable market for micro-CHP systems in NY. Once the Host Sites are selected, the System shall be independently tested and configured and the Host Sites shall be prepared for the proper integration of the Systems on-site. The Systems shall be installed and monitored for 12 months before developing a report to disseminate to the stakeholders.
Project Abstract
This project will develop a TL-N heat pump that will incorporate several substantial innovations to improve efficiency, reduce complexity and manufacturing cost and place TL-N at an attractive price point compared to traditional building HAC-HW systems. The goal of this project is to complete the research and development necessary to redesign the purely mechanical system previously developed into an advanced mechanical/electronic or mechatronic system, and will produce two working prototypes. The design, build, and testing of these prototypes will be accomplished in this effort. The TL-N mechatronic-driven system will incorporate several innovations to improve performance and reduce costs. These include an ultra-low-emission combustion burner, electronically-controlled actuators for cycle efficiency improvement, and innovative heat exchangers. Adaptation of these low cost mature technologies into the heat pump design will significantly increase operational efficiencies of the thermodynamic process while reducing cost.
Project Abstract
The Wild Center will refine the analysis to determine the optimum thermal storage volume with respect to energy savings, cost, and available area. The preliminary analysis shows that 1,700 gallons would yield improved performance, however they do not have the space to install a single tank with this volume. Instead, they will install two tanks each with half the identified volume. Clarkson University will build upon their previous studies of the boiler and extensively monitor the performance benefits associated with the thermal storage. They will capture data of the course of two years which will provide a comprehensive data set. They will also conduct an evaluation according to the ASHRAE 155P test method. The Wild Center will incorporate the data into their exhibits, allowing visitors to better understand biomass combustion.
Project Abstract
Hydronic Specialty Supply will develop an interface module that organizes the hydronics layout of a biomass-fired boiler and integrates smart control options for multi-boiler systems. The controls will be able to optimally manage the operation of the existing fossil fuel boiler, new biomass boiler, thermal storage tank, space heating, and even DHW. This interface module will be comprised of standardized hardware components, therefore reducing net installed cost to consumers and taking advantage of economies of scale. The project will bring the proposed solution through the prototyping phase into laboratory and field tests.
Project Abstract
Although on-demand water heaters are 37% more efficient than storage water heaters, they are significantly more expensive. The increased cost results from use of multi-stage burner banks that require complex electronic controls. Lawrence Berkeley National Laboratory's (LBNL) Low Swirl Burner (LSB) could reduce burner complexity for these appliances. Manufacturing costs may be reduced if LBNL's LSB technology is successfully applied to on-demand water heaters. LBNL performed laboratory testing to confirm the technical suitability of the LSB for on-demand water heaters across relevant product specifications.
Project Abstract
Syracuse University will fabricate and laboratory test a stack of Flame-assisted Fuel Cells (FFCs), which can generate electricity from the flame of fuel combustion. The research is intended to analyze the performance of the FFCs as well as their ability to undergo extensive thermal cycling. Data will be collected to quantify the open circuit voltage, power density, current density, and stack impedance compared to calculated values. Syracuse University will conduct research to determine if there are any opportunities to improve on material construction. The project will conclude with a market analysis and economic assessment of applications for the technology
Project Abstract
In this project, the Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will demonstrate and evaluate LED lighting and controls. The LRC will first evaluate a range of commercially available but currently underutilized control products and systems, from simple stand-alone controls, to fixture-integrated products, and more complex automated control systems. The LRC will review the features, operations, and protocols of each system selected and will analyze the operation of these control products with various types of drivers commonly used in commercially available LED lighting products. Once this review is complete, the LRC will down select two or more control systems to demonstrate and evaluate in different areas of an existing office building. The LRC will also select and install LED lighting fixtures to retrofit the existing fluorescent lighting in the building. Once the systems are installed and commissioned, the LRC will evaluate the operation of the control and LED lighting systems and compare their performance, operation, energy savings, and occupant acceptance to each other, as well as to the previously existing lighting system.
Project Abstract
Activities under this project will advance the development and market readiness of Vital Vio lighting products. These activities include characterization and optimization of Vital Vios current prototypes, full scale design concepts, LED module requirements including design and thermal analysis, LED module for incorporation into final fixture designs, various testing and certifications, and pilot implementations.
Project Abstract
Steven Winter Associates will develop and test methods for estimating the savings potential for partially or fully sealing these opening using tools common to energy auditors. The costs and benefits of best practice approaches for reducing energy losses through elevator and stairwell vents will be determined. A technical report will also be prepared for building owners, coop board of directors and energy auditors.
Project Abstract
This project involved researching the feasibility of commercial "humidity sponges", which could help even out daily and multi-day fluctuations of relative humidity in building spaces. This proof of concept study investigated the wicking and water vapor transfer properties of several materials, in addition to the topology and material properties of the structures termites use to manage humidity in their colonies. The project completed with a market analysis, in order to better understand the marketplace for passive or transient building controls in the energy-efficient dehumidification market space.
Project Abstract
Hydronic Specialty Supply is developing a thermal storage system with enhanced stratification and smart controls. The thermal storage system will have features that account for many of the known issues affecting current thermal storage tanks. The design and layout of the tank, including inlet and outlet ports, will be optimized for temperature stratification necessary for a hydronic heating system. However, the system will also include features allowing it to easily integrate with optional heat transfer capabilities, including solar thermal input or DHW output. The overall goal is to develop an enhanced solution for the biomass heating marketplace at an economical price point, while improving overall system performance. After design and prototype fabrication, the thermal storage system will be evaluated in an independent laboratory and field tested, with the final product being ASME certified.