Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 101 - 150 of 218

Project Abstract
Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.
Project Abstract
The Home Improvement Catalyst (HI Cat) is a new DOE initiative focused on high impact opportunities to achieve energy savings in home improvements already planned or being undertaken by homeowners. The Home Improvement Catalyst is designed to identify the multiple pathways to achieving an energy efficient home through energy upgrades and speed the adoption of market-ready energy improvements; resulting in greater energy savings over time.
Project Abstract
The Home Upgrade Program Accelerator is designed to help home energy upgrade programs bring services to more homes across the country by leveraging data management strategies that minimize costs while improving overall program effectiveness. These programs are currently completing hundreds of thousands of home upgrades annually with average savings of 20% for participating households.
Project Abstract
The Home Upgrade Program Accelerator is designed to help home energy upgrade programs bring services to more homes across the country by leveraging data management strategies that minimize costs while improving overall program effectiveness. These programs are currently completing hundreds of thousands of home upgrades annually with average savings of 20% for participating households.
Project Abstract
Carnegie Mellon University will design, implement, and evaluate a human-in-the-loop sensing and control system for energy efficiency of heating, ventilation, air conditioning (HVAC), and lighting systems based on a novel occupancy sensor. Through occupant sensing and real-time data collection, this project will reduce energy waste, targeting a 20% energy savings, while increasing occupant comfort by accurately estimating occupants in an area to overcome current HVAC system operations.
Project Abstract
Throughout the development of the AVS resources and meta-analysis, HI Cat will conduct outreach to EPA, utilities, CEE, REEOs, and program implementers seeking to advance programs that advance high performance HVAC and QI practices. DOE is partnering with MEEA to collect data and evaluate the HVAC SAVE program (Iowa), test approaches to offering additional services, and develop a case study of the HVAC SAVE program in Iowa.
Project Abstract
This project will combine electrochemical compression technology with ionic liquid desiccant to provide the most efficient means of managing latent and sensible heat loads in air-conditioning (AC) systems. This technology replaces the standard mechanical compressor commonly found today in AC systems with an electrochemical compressor that utilizes fuel cell technology to enable efficient heat pump systems.
Project Abstract
With a focus on typical business as usual HVAC trade practices, HI Cat seeks to capture greater efficiency at high volume within the home improvement transactions at key decision points. HI Cat will work in partnership with industry to design contractor ready resources via development of a Sequencing Tool that curates advisory content that can be applied during the sales transaction. The sequencing tool, designed for use by trade contractors, will identify opportunities to improve upon the current transaction in any given scenario, without disrupting it. Related resources, such as a contractor playbook, will provide ing relevant sales tools and tips; selection, specification, and field installation guidance; proposal and contract language; etc. It will also offer messaging about the energy efficiency pathway or customer journey, reference applicable DOE and industry technical standards/guidance and provide technical information to address follow on EE opportunities.
Project Abstract
This project will improve the external quantum efficiency (EQE) of amber and red aluminium gallium indium phosphide (AlGaInP)-based LEDs by developing strain-engineered cladding layers to provide enhanced carrier confinement.
Project Abstract
the University of Miami, in partnership with Schneider Electric and Lawrence Berkeley National Laboratory, will create a tool for dynamic cooling and airflow optimization that is customized for the design and operational requirements of data centers and computer rooms by integrating several open-source modeling packages: the Modeling Buildings Library/Spawn-of-EnergyPlus for flexible IT equipment and cooling system modeling; LBNLs GenOpt for optimization; and the University of Miamis Fast Fluid Dynamics package for airflow modeling.
Project Abstract
The project will study the integration trade-offs, cost and energy optimization of daylighting, LED electric lighting, plug load sensors and zonal air plow controls. If widely adopted, the integrated controls package in this project could have savings up to 750 Tbtu per year.
Project Abstract
The Levy Partnership, Inc. will develop low-cost, highly efficient comfort system designs to enable affordably built homes to use heat pumps with superior air distribution systems. This demonstration could result in 50% energy savings over 2009 code requirements.
Project Abstract
Sinovia Technologies will combine a barrier film technology with a nanowire transparent conduction film to make a single substrate product for OLED lighting. This technology will improve the efficiency and lower the cost of OLEDs.
Project Abstract
This project studies the synergistic interactions of daylighting, plug controls, automated fault detection and diagnostics (AFDD) and HVAC optimization. If widely used, the package of daylighting techniques, plug loads, AFDD and controls for HVAC systems validated in this project could have savings of 756 Tbtu per year.
Project Abstract
This project focuses on establishing a framework and identifying priority R&D needs for coordination with industry, Emerging Technology and market deployment programs. PNNL will develop a white paper evaluating the state of the art of commercially available sensors and controls technology for operations, maintenance, and commissioning applications in residential HVAC. This work assesses technology gaps and market needs, and provides clear recommendations for government action and industry involvement in advancing sensors, controls, diagnostics, and automated fault correction. The task will explore opportunities for industry engagement to gain feedback on report findings, better identify industry development plans, and focus BA/BTO investments.
Project Abstract
This project will attempt to measure the impact of lighting on the users of an outdoor lighting space. The experiments will determine the effects of different lighting types on the melatonin levels of the participants. As different CCT light sources will be used, their differing spectral contents can be evaluated to determine the most appropriate light source for implementation in the outdoor environment.
Project Abstract
The Midwest Energy Efficiency Alliance will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
North Carolina State University will develop OLEDs fabricated on low-cost high index corrugated substrates with a semi-random periodicity to give enhancements in extraction efficiency across the entire visible spectrum, due to the extraction of the thin-film-guided and surface-plasmon modes.
Project Abstract
Stone Mountain Technologies will build and test a low-cost gas heat pump that is optimized for heating-dominated climates. The technology will reduce heating costs by 30% - 45% compared to conventional gas furnaces and boilers.
Project Abstract
This project will help address the challenge of identifying loads within the long tail of consumption by integrating the previously developed PowerBlade wireless AC plug-through meters to measure real, reactive, and apparent power with load monitoring based on extracting high-fidelity electrical waveform features to capture power profiles and automatically identify and categorize MELs in a scalable manner.
Project Abstract
Mechanical Solutions, Inc. will develop a residential HVAC system featuring a highly efficient small centrifugal compressor. This project could provide a cheaper, more efficient, more environmentally friendly HVAC option for residential and commercial buildings.
Project Abstract
Ecotope, Inc. will conduct energy code field studies in Washington, Oregon, Minnesota, and Illinois to measure the impact of energy codes on multifamily buildings, and identify opportunities for savings through increased compliance.
Project Abstract
RTI International will develop and demonstrate novel luminaire designs that utilize advanced classroom lighting system technology, demonstrate the benefits of dynamic lighting, and collect feedback from education stakeholders. These efforts could increase the use of next-generation lighting in schools.
Project Abstract
PPG Industries, Inc. will develop and demonstrate manufacturing processes that will enable commercialization of a large area and low-cost "integrated substrate" for rigid OLED SSL lighting. Enabling large volume manufacturing with these new processes will grow the OLED market, leading to a potential 1.51 quads of energy savings by 2030.
Project Abstract
Maryland Energy Administration will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Oak Ridge National Laboratory (ORNL) will investigate a novel dehumidification process to avoid the excessive energy utilized by conventional approaches, through high-frequency mechanical vibration of ultrasonic transducers to eject adsorbed water in a liquid form.
Project Abstract
Dais Analytic Corporation will develop membrane HVAC technology that offers improved energy efficiency and eliminates harmful refrigerants. This technology has the potential to lead to notable energy usage reductions and environmental benefits.
Project Abstract
This project will attempt to develop and demonstrate a novel fabrication process that eliminates the use of shadow masks during the OLED deposition process. The proposed system will allow blanket deposition of all organic and cathode layers everywhere on the substrate, eliminating the need for masks.
Project Abstract
The University of Maryland will develop a heat exchanger that is 20% better than current designs in terms of size, weight, and performance. This next-generation heat exchanger will be designed for use in heat pumps and air conditioners and will drive energy savings in those applications.
Project Abstract
Lawrence Berkeley National Laboratory will produce an analysis of home upgrade programs and generate insights into replicable models that can positively impact the much broader energy efficiency program and business community across the U.S. This project supports the U.S. Department of Energy, state, regional, and local partners in reaching the overarching goal to reduce energy use intensity of existing homes by at least 40%.
Project Abstract
Home Innovation Research Labs, Inc. will develop wall system design guidance for builders and improve the durability of envelope assembly systems. Findings from this project could play a critical role in improving the efficiency of home heating and cooling and could reduce HVAC energy use by at least 10%.
Project Abstract
Building Science Corporation and partners will evaluate the use of a vapor control membrane, or diffusion vent, which could substantially reduce the risk of moisture issues in roof assemblies with fibrous insulation. This project will field test this solution in a cold climate new construction test house over three years, and will also test the approach in a high impact existing home weatherization application to be determined through stakeholder engagement.
Project Abstract
Lumenari, Inc. will develop a narrow-bandwidth red phosphor to improve phosphor-converted LED efficacy up to 28%. This will be accomplished through a combination of experimental and computational techniques to develop a novel host material for the selected emitter ion.
Project Abstract
ThermoLift, Inc. will develop a natural-gas-driven heat pump/air conditioner that provides space heating, space cooling, and water heating for residential and commercial buildings. This device would offer 30% - 50% improved efficiency over standard heat pumps.