Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 151 - 175 of 249

Project Abstract
RTI International will develop and demonstrate novel luminaire designs that utilize advanced classroom lighting system technology, demonstrate the benefits of dynamic lighting, and collect feedback from education stakeholders. These efforts could increase the use of next-generation lighting in schools.
Project Abstract
Gas Technology Institute will develop and conduct advanced modeling of the GHP system in order to provide a detailed assessment of the technology using regional weather data and detailed utility information for several New York locations and building types. The project will include a market assessment of the competitiveness of the variable refrigerant volume (VRV) GHP, including energy and economic benefits, the value of resiliency, and the value of self-powered heating and cooling systems for customers in New York. The Proposer will take into account the energy savings, operating costs, lifecycle costs, and greenhouse gas emissions in order to determine any energy, economic, or environmental merits of GHPs over standard HVAC equipment
Project Abstract
Maryland Energy Administration will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
The project will implement lessons learned from previous high performance housing research and measure the results in two new houses built in partnership with Habitat for Humanity and homeowners. The houses will be built in a disadvantaged community in Stockton. Each house will include advanced architectural design features, high performance enclosures, advanced heating, ventilating and air conditioning systems, low-cost water heating systems and other advanced energy efficiency measures. One all-electric home and one mixed fuel (combined electric and natural gas) home will be built to demonstrate the respective costeffectiveness of each set of features. In addition to the measured results from actual occupancy, the project will develop a guide to affordable residential zero net energy design and construction, training curriculum, and new class offerings based on the project results for building practitioners.
Project Abstract
Oak Ridge National Laboratory (ORNL) will investigate a novel dehumidification process to avoid the excessive energy utilized by conventional approaches, through high-frequency mechanical vibration of ultrasonic transducers to eject adsorbed water in a liquid form.
Project Abstract
This project will attempt to develop and demonstrate a novel fabrication process that eliminates the use of shadow masks during the OLED deposition process. The proposed system will allow blanket deposition of all organic and cathode layers everywhere on the substrate, eliminating the need for masks.
Project Abstract
The University of Maryland will develop a heat exchanger that is 20% better than current designs in terms of size, weight, and performance. This next-generation heat exchanger will be designed for use in heat pumps and air conditioners and will drive energy savings in those applications.
Project Abstract
The goal of the project is to reduce the energy consumption of residential and commercial plug load devices, such as set-top boxes, TVs, computers and game consoles. The project will leverage mobile design practices, hardware components and energy management software kernels, and prove their effectiveness on virtual prototypes and reference designs of targeted plug load devices. Based on these findings, the recipient will develop, tune and deploy the design methodology guidelines for energy efficient plug load designs to the manufacturers of plug load devices and their hardware, software and tools suppliers. The recipient will also define and introduce a widely accepted industry standard through the Institute of Electrical and Electronics Engineers (IEEE) to support the newly developed unified design methodology and secure its long-term adoption and further evolution.
Project Abstract
Lawrence Berkeley National Laboratory will produce an analysis of home upgrade programs and generate insights into replicable models that can positively impact the much broader energy efficiency program and business community across the U.S. This project supports the U.S. Department of Energy, state, regional, and local partners in reaching the overarching goal to reduce energy use intensity of existing homes by at least 40%.
Project Abstract
Home Innovation Research Labs, Inc. will develop wall system design guidance for builders and improve the durability of envelope assembly systems. Findings from this project could play a critical role in improving the efficiency of home heating and cooling and could reduce HVAC energy use by at least 10%.
Project Abstract
Building Science Corporation and partners will evaluate the use of a vapor control membrane, or diffusion vent, which could substantially reduce the risk of moisture issues in roof assemblies with fibrous insulation. This project will field test this solution in a cold climate new construction test house over three years, and will also test the approach in a high impact existing home weatherization application to be determined through stakeholder engagement.
Project Abstract
BPA is seeking to expand multifamily energy efficiency incentive offerings for new and existing construction. The goal is to identify and work out the technical challenges associated with integrating technologies into multifamily buildings. Part of the BPA new multifamily program development work requires building energy modeling comparing multifamily buildings built to Washington State code versus DOE Zero Energy Ready (DOEZER) standards. The project will assess the low-rise multifamily DOE ZER program against the 2015 Washington State Energy Code (WSEC) to coordinate the DOE ZER modeling for a target home; and model DOE ZER specifications using SEEM and compare the results to existing 2015 WSEC energy use analysis. Energy savings will be summarized and included in a report describing the analysis methodology, DOEZER and WSEC modeling specifications and the above code savings using one set of target measures.
Project Abstract
Design guidelines have helped accelerate the deployment strategies for central hot water systems in multifamily buildings through the Pacific Northwest. This project will deliver two design guidelines for multifamily hot water recirculation loops and central heat pump hot water systems for future use by architects, engineers, contractors and developers by distilling the best practices and findings from recently completed research. Each guideline will present the operating principles, recommended design choices, and give examples where appropriate.
Project Abstract
BPA's Emerging Technology group is actively working on improving multifamily domestic hot water and space heating energy efficiency research. The goal is to identify and work out the technical challenges associated with integrating these technologies into multifamily buildings. This project is providing assistance for a feasibility design to determine if this concept is feasible and in turn, the potential mechanical system costs in aiding in the determination of potential utility incentives. The design study will determine if this central heat pump mechanical system is feasible and to determine project costs. The results of the study will be given to BPA and EWEB to determine if the project will move forward.
Project Abstract
Lumenari, Inc. will develop a narrow-bandwidth red phosphor to improve phosphor-converted LED efficacy up to 28%. This will be accomplished through a combination of experimental and computational techniques to develop a novel host material for the selected emitter ion.
Project Abstract
ThermoLift, Inc. will develop a natural-gas-driven heat pump/air conditioner that provides space heating, space cooling, and water heating for residential and commercial buildings. This device would offer 30% - 50% improved efficiency over standard heat pumps.
Project Abstract
Appalachian State University will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Oak Ridge National Laboratory will develop and demonstrate a cost-effective, energy-efficient clothes dryer that is based on thermoelectric technology. This transformative dryer technology has the potential to save 356 TBtu/year.
Project Abstract
Oak Ridge National Laboratory, in partnership with Georgia Tech and IntelliChoice Energy, will integrate its Ground-Level Integrated Diverse Energy Storage (GLIDES) system with HVAC systems to provide efficient building-integrated electrical and thermal energy storage. This system enables smarter building-grid integration, as well as the use of low-grade heat, which would otherwise be lost in traditional HVAC systems.
Project Abstract
Oak Ridge National Laboratory will develop a novel magnetocaloric air conditioner with the potential for efficiency improvements of up to 25% over conventional vapor compression systems. This new technology could save the U.S. 1 quad annually.
Project Abstract

Alcoa will develop advanced aluminum window frame technology as well as a manufacturing process for energy-saving commercial window systems that use the technology. Use of these windows in new and existing commercial buildings would drive progress toward national energy savings goals.