Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 126 - 150 of 204

Project Abstract
The Contractor seeks to baseline test, install, and evaluate the performance of a 21kW micro-CHP system, that provides hot water and power as a packaged unit, at (2) Host Sites in NY. The proposed System shall feature a synchronous generator and black-start capability. The goal of the project is to provide manufacturers, building owners, and installers information regarding the deployment of micro-CHP systems, in order to promote a sustainable market for micro-CHP systems in NY. Once the Host Sites are selected, the System shall be independently tested and configured and the Host Sites shall be prepared for the proper integration of the Systems on-site. The Systems shall be installed and monitored for 12 months before developing a report to disseminate to the stakeholders.
Project Abstract
Maryland Energy Administration will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Oak Ridge National Laboratory (ORNL) will investigate a novel dehumidification process to avoid the excessive energy utilized by conventional approaches, through high-frequency mechanical vibration of ultrasonic transducers to eject adsorbed water in a liquid form.
Project Abstract
This project will attempt to develop and demonstrate a novel fabrication process that eliminates the use of shadow masks during the OLED deposition process. The proposed system will allow blanket deposition of all organic and cathode layers everywhere on the substrate, eliminating the need for masks.
Project Abstract
The University of Maryland will develop a heat exchanger that is 20% better than current designs in terms of size, weight, and performance. This next-generation heat exchanger will be designed for use in heat pumps and air conditioners and will drive energy savings in those applications.
Project Abstract
The goal of the project is to reduce the energy consumption of residential and commercial plug load devices, such as set-top boxes, TVs, computers and game consoles. The project will leverage mobile design practices, hardware components and energy management software kernels, and prove their effectiveness on virtual prototypes and reference designs of targeted plug load devices. Based on these findings, the recipient will develop, tune and deploy the design methodology guidelines for energy efficient plug load designs to the manufacturers of plug load devices and their hardware, software and tools suppliers. The recipient will also define and introduce a widely accepted industry standard through the Institute of Electrical and Electronics Engineers (IEEE) to support the newly developed unified design methodology and secure its long-term adoption and further evolution.
Project Abstract
BPA is seeking to expand multifamily energy efficiency incentive offerings for new and existing construction. The goal is to identify and work out the technical challenges associated with integrating technologies into multifamily buildings. Part of the BPA new multifamily program development work requires building energy modeling comparing multifamily buildings built to Washington State code versus DOE Zero Energy Ready (DOEZER) standards. The project will assess the low-rise multifamily DOE ZER program against the 2015 Washington State Energy Code (WSEC) to coordinate the DOE ZER modeling for a target home; and model DOE ZER specifications using SEEM and compare the results to existing 2015 WSEC energy use analysis. Energy savings will be summarized and included in a report describing the analysis methodology, DOEZER and WSEC modeling specifications and the above code savings using one set of target measures.
Project Abstract
Design guidelines have helped accelerate the deployment strategies for central hot water systems in multifamily buildings through the Pacific Northwest. This project will deliver two design guidelines for multifamily hot water recirculation loops and central heat pump hot water systems for future use by architects, engineers, contractors and developers by distilling the best practices and findings from recently completed research. Each guideline will present the operating principles, recommended design choices, and give examples where appropriate.
Project Abstract
BPA's Emerging Technology group is actively working on improving multifamily domestic hot water and space heating energy efficiency research. The goal is to identify and work out the technical challenges associated with integrating these technologies into multifamily buildings. This project is providing assistance for a feasibility design to determine if this concept is feasible and in turn, the potential mechanical system costs in aiding in the determination of potential utility incentives. The design study will determine if this central heat pump mechanical system is feasible and to determine project costs. The results of the study will be given to BPA and EWEB to determine if the project will move forward.
Project Abstract
Lumenari, Inc. will develop a narrow-bandwidth red phosphor to improve phosphor-converted LED efficacy up to 28%. This will be accomplished through a combination of experimental and computational techniques to develop a novel host material for the selected emitter ion.
Project Abstract
ThermoLift, Inc. will develop a natural-gas-driven heat pump/air conditioner that provides space heating, space cooling, and water heating for residential and commercial buildings. This device would offer 30% - 50% improved efficiency over standard heat pumps.
Project Abstract
Appalachian State University will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Oak Ridge National Laboratory will develop and demonstrate a cost-effective, energy-efficient clothes dryer that is based on thermoelectric technology. This transformative dryer technology has the potential to save 356 TBtu/year.
Project Abstract
Oak Ridge National Laboratory, in partnership with Georgia Tech and IntelliChoice Energy, will integrate its Ground-Level Integrated Diverse Energy Storage (GLIDES) system with HVAC systems to provide efficient building-integrated electrical and thermal energy storage. This system enables smarter building-grid integration, as well as the use of low-grade heat, which would otherwise be lost in traditional HVAC systems.
Project Abstract
Oak Ridge National Laboratory will develop a novel magnetocaloric air conditioner with the potential for efficiency improvements of up to 25% over conventional vapor compression systems. This new technology could save the U.S. 1 quad annually.
Project Abstract

Alcoa will develop advanced aluminum window frame technology as well as a manufacturing process for energy-saving commercial window systems that use the technology. Use of these windows in new and existing commercial buildings would drive progress toward national energy savings goals.

Project Abstract
Oak Ridge National Laboratory will develop a clothes dryer that is extremely energy efficient and has a load drying time of approximately 20 minutes. This technology has the potential to revolutionize the clothes dryer industry, as well as to achieve 0.4 quads of energy savings.
Project Abstract
Acuity Brands Lighting will develop an OLED luminaire that features DC current drivers integrated with each panel and advanced user controls. This advancement in OLED technology could lead to more-efficient OLED lighting systems and reduced energy use for building lighting.
Project Abstract
The OEI will capitalize on existing DOE investments to create an integrated open source technology platformthe OpenEfficiency Platform (OEP)capable of supporting a range of energy efficiency program types. Working closely with a group of utility program administrators, the OEI will support the design, planning, and use of the OEP in a series of commercial pilot programs for whole building energy efficiency, local government benchmarking, and auditing.
Project Abstract
The recipient will use EnergyPlus, a building energy modeling tool, to analyze the costeffectiveness of various electricity saving/generation measures for multifamily and commercial buildings in California. For each building type and climate zone, the results will include a cost-benefit analysis for each measure individually and for an optimized package of measures that reduces net electricity consumption to achieve as close to zero net energy as is cost-effectively possible.