Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 25 of 29

Project Abstract
This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.
Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract

The Automated Cloud-based Continuously Optimizing Building Energy Management System (ACCO-BEMS) overcomes limitations of existing energy management systems by automating optimized control of building systems and devices. The technology overcomes limitations of existing energy management systems and eliminates the need for expensive reprogramming needed to implement optimization measures. As such, the technology can co-exist with existing systems in retrofit applications, or it can be implemented as a new installation.

Project Abstract

This project optimizes and simplifies control upgrades to demonstrate energy savings while improving occupant comfort. This demonstration uses automated fault detection and diagnostics and continuous commissioning with the use of advanced measurement and verification procedures. The agreement includes recommendations for strategies, tools, and initiatives to address market barriers and promote large scale market adoption.

Project Abstract
The Virginia Tech Advanced Research Institute will develop a software platform that improves sensing and control of equipment in small and medium-sized commercial buildings. The platform will be able to optimize electricity usage to reduce energy consumption and help implement demand response.
Project Abstract
The City of Seattle will engage with building owners, managers, and service providers to develop market expertise to train local building operations professionals to more effectively tune-up existing buildings, which could reduce city energy costs by $1.5 million annually. Professionals will tune-up 70-80 buildings with 10-20% energy savings, and complete capital retrofits to 20-30 buildings providing 35% energy savings, for a total of 1 billion kBtu annual savings.
Project Abstract
The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.
Project Abstract

The recipient will develop low-cost lighting components with open communication interfaces that allow seamless integration into whole-building control and automation systems. The project will target future California Building Energy Efficiency Standards (Title 24), and establish methods by which the site-specific configuration and operation of networked lighting controls systems can be effectively addressed, and more easily implemented by the marketplace

Project Abstract
The University of California-Berkeley and its partner, Building Robotics, will create, evaluate and establish the technical foundations for secure and easy to deploy building energy efficiency applications utilizing pervasive, low-cost wireless sensors integrated with traditional Building Management Systems (BMS), consumer-sector building components, personalized smartphone devices, and powerful data analytics.
Project Abstract
Carnegie Mellon University will design, implement, and evaluate a human-in-the-loop sensing and control system for energy efficiency of heating, ventilation, air conditioning (HVAC), and lighting systems based on a novel occupancy sensor. Through occupant sensing and real-time data collection, this project will reduce energy waste, targeting a 20% energy savings, while increasing occupant comfort by accurately estimating occupants in an area to overcome current HVAC system operations.
Project Abstract
The project will study the integration trade-offs, cost and energy optimization of daylighting, LED electric lighting, plug load sensors and zonal air plow controls. If widely adopted, the integrated controls package in this project could have savings up to 750 Tbtu per year.
Project Abstract
This project studies the synergistic interactions of daylighting, plug controls, automated fault detection and diagnostics (AFDD) and HVAC optimization. If widely used, the package of daylighting techniques, plug loads, AFDD and controls for HVAC systems validated in this project could have savings of 756 Tbtu per year.
Project Abstract

The project team is demonstrating and validating new retrofit package solutions from laboratory pre-testing through field demonstrations in existing government-owned commercial buildings. The solution sets, dubbed "INTER", are comprised of shading products from Rollease Acmeda and lighting and plug load systems and integrated controls, including HVAC systems, from Enlighted. The technologies can be combined and customized to suit a variety of building types and spaces, resulting in an estimated whole building energy reduction of 20 to 32 percent. Beginning in the Los Angeles basin, the team is leveraging existing market connections to increase and accelerate market adoption of these retrofit solution sets to maximize the potential energy and carbon savings, first in the region and ultimately, throughout California.

Project Abstract
The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layouts. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions. To begin the project, the LRC will specify a lighting control system capable of operating four integral LED suspended luminaires. The controls manufacturers selected will be CREE, Wattstopper, and Lutron. The LRC will also order eight integral LED luminaires (four luminaires from CREE Lighting with 0-10V drivers and step-dimming drivers that are used with the fixture integrated lighting sensors and four from Lithonia Lighting with 0-10V drivers). Six luminaire control system combinations will be evaluated in this project.
Project Abstract
PARC, A Xerox Company, in partnership with Energy ETC Inc., will develop a wireless system of peel-and-stick sensor nodes that are powered by radio frequency hubs, relaying data to building management systems that can significantly reduce energy use. The wireless sensors and radio frequency hubs provide an opportunity to increase building energy efficiency by gathering and compiling data needed for building management.
Project Abstract

This project will test an Integrated Building Control Package that maximizes energy efficiency for existing commercial buildings. The project will refine novel control algorithms that utilize shared device state and environmental data for lighting, fenestration and heating, ventilating and air conditioning (HVAC) systems. Sharing and considering data from multiple device types will further improve overall, sustained, system performance and operation. Control algorithms will prioritize lighting or heating/cooling savings based on climate and building design. HVAC system management will leverage passive ventilatio

Project Abstract

This project will test an Integrated Building Control Package that maximizes energy efficiency for existing commercial buildings. The project will refine novel control algorithms that utilize shared device state and environmental data for lighting, fenestration and heating, ventilating and air conditioning (HVAC) systems. Sharing and considering data from multiple device types will further improve overall, sustained, system performance and operation. Control algorithms will prioritize lighting or heating/cooling savings based on climate and building design. HVAC system management will leverage passive ventilatio

Project Abstract
Will proven strategies from residential behavioral programs provide savings in a small commercial application? Snohomish County Public Utility District's pilot will test behavior change in the commercial sector. A solution for this sector would be highly attractive to utilities with small commercial facility end users, which represent a significant untapped energy savings resource with unique barriers to participation in behavior change programs. The pilot project is a joint venture between Snohomish County Public Utility District, PECI, Lucid, and Starbucks. The pilot will be implemented at several Puget Sound area Starbucks stores and involves providing staff with frequent energy use data and between-store competitions. If successful, the approach could be scaled to similar facilities across the region. Starbucks has over 700 stores in Washington, Oregon, Idaho, and Montana. Improvement on previous work: Very little work has been done in the small commercial arena and no pilots have been done with a large chain, such as Starbucks.
Project Abstract
This data gathering and analysis project will develop reliable estimates of energy savings for Networked Lighting Controls (NLC) project and on a larger scale, accelerate the deployment and market adoption of NLC in Commercial Buildings. Advanced Lighting Controls has significant potential to accelerate LED lighting adoption. In a recent study by LBNL, multiple lighting control strategies saved an average of 38% of energy savings. However, market adoption on NLC/Advance Lighting Controls is estimated to be less then 1%. This project is designed to help BPA determine appropriate program designs, incentives, training and Qualified Products to increase deployment of NLC. The project will request data from several utilities including BPA about energy savings achieved in recent projects. BPA is partnering with Efficiency Forward (formerly DLC) to complete this project.