Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 50 of 168

Project Abstract
Lawrence Berkeley National Laboratory will provide a suite of organizational, analysis, implementation, and verification methodologies, tools, and resources to help small commercial buildings meet the 2030 District Challenge to reduce energy by 20%. This support aims to help small commercial buildings in major U.S. cities save up to 2.4 billion kBtu a year.
Project Abstract
The University of Florida will develop a technology for compact, low-cost combined water heating, dehumidification, and space cooling. This technology has the potential to save 480 TBtu/year in water heating and an additional 135 TBtu/year by reducing the air conditioning load.
Project Abstract
The Industrial Science & Technology Network, Inc. will develop an environmentally clean, cost-effective building insulation with superior performance. Commercialization of this technology would reduce U.S. energy consumption related to building envelope components by 7%, equal to $8 billion in annual economic savings.
Project Abstract
Lawrence Berkeley National Laboratory will identify an alternative method to estimate two difficult-to-measure inputs used in building energy modeling. The end product will simplify and help automate the process of creating a calibrated model for existing buildings.
Project Abstract
Seventhwave's Accelerate Performance scales owner demand for energy performance at a cost comparable to current construction by eliminating key market bariers. This program will achieve an average of 50% realized savings compared to traditional 30% modeled savings for aggressive new construction projects.
Project Abstract
Argonne National Laboratory will develop an acoustic method of measuring the infiltration of a building envelope. The method will enable infiltration measurement of all buildings, which could lead to decreased building energy use.
Project Abstract
Southface Energy Institute will develop energy efficiency evaluation and upgrade tools that provide at least a 50% energy improvement in new construction and a 20% energy improvement from upgrades to existing buildings, as well as develop energy audit training materials. These tools and training materials will help spur energy efficiency gains in new and existing buildings.
Project Abstract
The Center for Energy and Environment and partners will field test and optimize an innovative new method for whole house air-sealing using aerosol sealant. This aerosol sealant method is already a proven duct sealing solution, and can reduce time and labor costs by simultaneously measuring, locating, and sealing leaks.
Project Abstract
The Institute for Market Transformation will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.
Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract
The National Trust for Historic Preservation will provide low-cost energy efficiency services to small businesses in California, Wisconsin, New York, and Washington State. These efforts aim to increase small business participation in energy retrofit programs and could lead to up to $30 billion in annual energy savings.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract
The city of Milwaukee will demonstrate retrofit approaches, including bundled energy efficiency retrofits paired with emerging finance mechanisms, in up to 200 commercial buildings across Wisconsin. These demonstrations could lead to increased adoption of energy efficiency technologies throughout the state.
Project Abstract
The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S. Department of Energy (DOE) is continually expanding this network of residential energy efficiency programs and partners to new members.
Project Abstract
The Fraunhofer Center for Sustainable Energy Systems will develop a plastic foam for use in U.S. buildings that is less expensive, mechanically stronger, and more environmentally friendly than current options. This foam will satisfy fire safety codes without the need for fire retardants and is easy to install.
Project Abstract
Oak Ridge National Laboratory (ORNL) will work to address key issues in high performance HVAC and envelope systems by mitigating market uncertainty regarding the durability of high-performing envelope systems and validating and demonstrating advanced heating, ventilation, and air conditioning (HVAC) solutions for low-load homes. Improved technologies and systems can result in significant savings on monthly utility bills, reducing the payback period and offsetting the initial investment for the homeowner.
Project Abstract
The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more.
Project Abstract
The Georgia Institute of Technology will support 20 student project teams in developing building energy efficiency technologies through a capstone design project. This effort will better prepare students for employment in the building energy efficiency sector. Additionally, the combined energy savings from these projects is estimated to add up to over 1.8 Quads per year.
Project Abstract
The Virginia Tech Advanced Research Institute will develop a software platform that improves sensing and control of equipment in small and medium-sized commercial buildings. The platform will be able to optimize electricity usage to reduce energy consumption and help implement demand response.
Project Abstract
The U.S. Department of Energy (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Guidelines are based on the collaborative efforts of DOE and its stakeholders to develop a framework for organizing core building science principles with key job classifications.
Project Abstract
The City of Seattle will engage with building owners, managers, and service providers to develop market expertise to train local building operations professionals to more effectively tune-up existing buildings, which could reduce city energy costs by $1.5 million annually. Professionals will tune-up 70-80 buildings with 10-20% energy savings, and complete capital retrofits to 20-30 buildings providing 35% energy savings, for a total of 1 billion kBtu annual savings.
Project Abstract

The Window Covering Manufacturing Association will create the Attachments Energy Rating Council to develop an independent rating, certification, labeling, and performance verification program for window attachments. This program will help drive market penetration of energy-saving products and further innovation in the industry.

Project Abstract
NEEP conducted a market assessment of existing installer practices as well as existing guidance tools, protocols and resources specific to cold climates. Using the market assessment findings, NEEP developed ccashp design and installation guidance for trade contractors. The documents are developed to assist installers around sizing and selecting ASHPs for cold climate applications, while preserving high efficiency, performance, and customer satisfaction. HI Cat will cross-promote and link to the guidance.
Project Abstract
The Northeast Energy Efficiency Partnerships will demonstrate advanced lighting controls (ALCs), which turn off or dim lights when they are not in use, in 10 buildings in order to address barriers to ALC adoption. Installing ALC systems in all commercial buildings would save approximately 1,053 TBtu of energy or $10.4 billion/year.
Project Abstract
The Institute for Market Transformation (IMT) will conduct energy code field studies in Florida, Nebraska, Iowa, and Nevada to measure the impact of energy codes on commercial building energy efficiency, and identify opportunities for savings through increased compliance.
Project Abstract
Maryland Energy and Sensor Technologies, LLC will develop a compact, high-efficiency thermoelastic cooling system. This next-generation HVAC technology will have low environmental impact and a small carbon footprint and could lead to substantial efficiency gains in building heating and cooling.
Project Abstract
NextEnergywill reduce market barriers to adoption of lighting controls solution to spur market adoption. This will be achieved through demonstrations, consumer education, and utility incentive adjustment. NextEnergy and partners will train over 100 contractors in advanced lighting controls and simplified installation methods and develop a model for streamlined incentives for lighting controls.
Project Abstract
BlocPower will develop a crowd-sourcing website to help market, finance, and install energy efficiency retrofits for 1,500 small buildings in low-income communities across the country. These efforts could help these communities achieve notable energy savings and reduce their carbon emissions.
Project Abstract
A.O. Smith Corporation will demonstrate underutilized micro-combined-heat-and-power (micro-CHP) applications, which produce electricity and heat from a single source, in buildings with significant hot water demand. These micro-CHP applications can provide 38% energy savings in these building types.
Project Abstract
Lumileds, LLC will reduce LED manufacturing costs by eliminating some of the complex processes associated with current flip-chip technology and enabling lower-cost packaging methods. This project looks to address the needs of the indoor and outdoor illumination markets, which demand the most competitive Lm/W and Lm/$ characteristics in small footprint components.
Project Abstract
The project effort is a two-year development program focused on isocyanurate-based nanofoam for building and industrial applications. The main target of this early stage innovation project is to develop a PIR-based super insulation at atmospheric pressure (SIAP) that (1) can attain an R-12 hrft2F/Btuin (_=12 mW/mK) via creating nanoporous morphology, (2) is mechanically robust and (3) is cost-competitive to the conventional rigid foam boards.
Project Abstract
Newport Partners, in partnership with Broan-NuTone, will develop and validate a smart range hood that senses pollutants and automatically operates to remove the contaminants efficiently. The proposed smart range hood will be quiet (<1 sone), five times more energy efficient than todays ENERGY STAR models, and will capture nearly 100% of pollutants.
Project Abstract

Pacific Northwest National Laboratory will develop a low-cost window coating that allows infrared (heat) penetration in cooler temperatures but switches to reflect infrared waves in warmer temperatures. This coating has the potential to save up to 2.24 quads/year in heating, cooling, and lighting energy use.

Project Abstract
University of Michigan - Ann Arbor will develop innovative methods to outcouple the light within OLED devices in order to increase external quantum efficiency. This will be accomplished through nanoscale texturing beneath the anode outside the active region, fabricating sub-anode gratings along with microlens arrays, and top emitting structures with a sub-anode grid coupled with a reflective mirror at the base.
Project Abstract
This project will assess the DC power market to understand distribution opportunities, technical and analytical gaps for residential and commercial applications, and inform the analysis, design, and planning capabilities of these loads. The team will extend DOEs open-source whole-building energy modeling tools platformthe EnergyPlus engine and OpenStudio software development kitwith power distribution system modeling capabilities to enable evaluation of energy and economic benefits of AC, DC, and hybrid power distribution systems.
Project Abstract
Oak Ridge National Laboratory will develop system-level architecture for a plug-and-play multi-sensor platform, which can utilize peel-and-stick sensors less than a quarter of an inch thick and powered by indoor, high-performance, flexible photovoltaics. By developing sensors that are multi-functional and self-powered, this innovative platform can be adopted and deployed for wider spread energy efficiency of buildings.
Project Abstract
Envision Charlotte will expand its energy management approaches to more than triple the number of participating buildings. By adding additional participants, Envision Charlotte will continue to foster innovation in conserving energy and reducing operating costs.
Project Abstract
Oak Ridge National Laboratory will develop a monitoring system capable of identifying opportunities for energy efficiency improvements in buildings. The technology could improve the energy efficiency of buildings by 15% - 25%.
Project Abstract
The New Buildings Institute will work in a variety cities around the country to systematically identify how energy codes and other policy measures influence energy consumption patterns in municipal buildings. The New Buildings Institute will develop a methodology to measure the impact of codes on municipal building portfolios, and provide local governments with tools to identify which buildings are ripe for energy efficiency-related investments.
Project Abstract

PPG Industries, Inc. will develop a process to produce cheaper, stronger vacuum insulating glazings (VIGs), which are used to make windows more energy efficient. This process could lead to increased adoption of VIGs in windows, which would lead to significant energy savings.