Log in or register to create Field Kits and Sales Worksheets. Why register?

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

The Midwest Energy Efficiency Alliance will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.

Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps DHPs with back up resistance heating. This research project will utilize the Pacific Northwest National Laboratory (PNNL) Lab Homes to test how the performance of a multi-zone ducted mini split application compares to the traditional single zone DHP with back up resistance heat in a single family application. The PNNL Lab homes provide the opportunity to conduct a side by side experiment with identical homes. Results of this research will determine if BPA should pursue additional field tests.

Unilux Advanced Manufacturing, LLC is a Schenectady, NY based corporation that is engaged in the design, evaluation, manufacture, and commercial distribution of high performance large scale boilers. Unilux currently has built and partially tested a 10 MMBTU prototype large scale condensing boiler (LSCB) with an anticipated efficiency of 96% compared to a conventional boiler efficiency of 81%. An 8-20 MMBTU LSCB would be appropriately sized for large facilities such as public schools, universities, state owned buildings, hospitals, and hotels.

The project team is demonstrating and validating new retrofit package solutions from laboratory pre-testing through field demonstrations in existing government-owned commercial buildings. The solution sets, dubbed "INTER", are comprised of shading products from Rollease Acmeda and lighting and plug load systems and integrated controls, including HVAC systems, from Enlighted. The technologies can be combined and customized to suit a variety of building types and spaces, resulting in an estimated whole building energy reduction of 20 to 32 percent. Beginning in the Los Angeles basin, the team is leveraging existing market connections to increase and accelerate market adoption of these retrofit solution sets to maximize the potential energy and carbon savings, first in the region and ultimately, throughout California.

Create a buying guide for someone who wants to purchase an easily commissioned lighting control system. What are some of the main products available, and how do they compare to each other? The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layoutsoffice and high bay. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions.

The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layouts. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions. To begin the project, the LRC will specify a lighting control system capable of operating four integral LED suspended luminaires. The controls manufacturers selected will be CREE, Wattstopper, and Lutron. The LRC will also order eight integral LED luminaires (four luminaires from CREE Lighting with 0-10V drivers and step-dimming drivers that are used with the fixture integrated lighting sensors and four from Lithonia Lighting with 0-10V drivers). Six luminaire control system combinations will be evaluated in this project.

Installed LED Lighting fixtures and lamps at a number of different types of BPA facilities

The project will develop LED luminaires specifically for three applications: clean rooms, containment areas and surgical suite applications. The LED luminaires will (1) conform to DLC Qualifications and LM79/LM80/IES Handbook guidelines and produce desired levels of glare-free, uniform illumination; (2) maximize energy efficiency, heat dissipation, and integration into modern ceiling structures; and (3) develop new universally accepted standards for evaluation for LED luminaires in clean room applications and validate their performance with respect to leakage and surface contamination. The proposed work includes mechanical/electrical design, prototype creation, component procurement, tooling, production, assembly, field testing, independent lab testing and cost/sell budget development. It also includes market/sales development to create new marketing materials and training of sales force (internal support, traditional distribution and OEM), and creation of a promotional program.

The goal of the project is to provide background information to support listing mogul based lighting in the Designlights Consortium Qualified Product List to support cost-effective LED retrofits. This phase of the study will identify and document case studies.

Market characterization and testing of mogul based LED replacement lamps and systems. Goal: background information to support listing in the Designlights Consortium Qualified Product List, to support cost-effective LED retrofits (if the data supports this). Research questions include:
Market characterization: what mogul based sockets are in place, by application type and wattage? National scope, for input to DLC process.
Market survey: What mogul based LED replacement lamps and kits are available?
Literature survey and pilot test: Do they work?

Steven Winter Associates (SWA) will conduct the retrofit installation and commissioning of (2) steam boiler burners with linkageless burner controls at demonstration sites in NYC. The project will use remotely monitored measurement and verification equipment to provide data collection of the systems pre and post- retrofit. SWA will oversee the installation and commissioning of the systems to ensure optimization of energy performance at demonstration sites. SWA will then develop a best practices strategy for the retrofitting process and the collected data will be analyzed for cost analysis, energy savings, metrics, and payback over both heating and non-heating seasons. The results of the project will be shared with building owners, management firms, building operators, and representatives from municipal and state organizations who are responsible for the evaluation of boiler upgrades in their respective organizations.

The goal of this project is to advance air-conditioner and protection or control modeling for implementation in the Phase 2 of Western Electricity Coordinating Council (WECC) composite load model. This project will investigate the impact of motor model aggregation, distribution equivalencing, and positive sequence phasor representation on the model results. Phase 2 composite load model requires additional research and development, which will be addressed by the proposed research project that includes:
1. Advance dynamic modeling of single-phase residential air-conditioners, including more detailed testing, modeling, and validation using both test and disturbance data
2. Developing load composition data sets for a wide variety of commercial buildings, including rules of association that map electrical end uses on load model components
3. Advance modeling of protection, controls and energy management systems used in variety of end use applications and buildings
4. Deploying disturbance data collection systems in distribution systems for dynamic model validation.

North Carolina State University will develop OLEDs fabricated on low-cost high index corrugated substrates with a semi-random periodicity to give enhancements in extraction efficiency across the entire visible spectrum, due to the extraction of the thin-film-guided and surface-plasmon modes.

Xergy will develop electrochemical compression technology in combination with an energy recovery module to replace a solid-state compressor for use in heat pumps. This technology will enable heat pumps to use water as the refrigerant and could lead to efficiency improvements of 30% - 56%.

This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.

This project will address the high cost of ground heat exchangers (GHEs) for water-to-water and water-to-air heat pumps to facilitate the application of efficient ground-coupled heat pumps in California. The project will focus on shallow (20-30 feet deep) and large diameter (2-3 feet diameter) ground heat exchanger designs using helical coil heat exchangers. The project team will develop models, validate them with field data from two existing sites, identify optimal designs, and develop modeling methods that can be adapted for use with Title 24 standards compliance tools. The project will also produce typical design specifications that will support future Title 24 eligibility criteria. A design guide will be developed for use by the industry as a training aid, and a position paper will be prepared for the Department of Water Resources' California Geothermal Heat Exchange Well (GHEW) Standards Stakeholder Advisory Group.

Stone Mountain Technologies will build and test a low-cost gas heat pump that is optimized for heating-dominated climates. The technology will reduce heating costs by 30% - 45% compared to conventional gas furnaces and boilers.

Oak Ridge National Laboratory will develop and demonstrate a novel insulation material that will be used to improve the thermal insulation of windows. Adoption of this technology would lead to significant energy savings in buildings.

This project will help address the challenge of identifying loads within the long tail of consumption by integrating the previously developed PowerBlade wireless AC plug-through meters to measure real, reactive, and apparent power with load monitoring based on extracting high-fidelity electrical waveform features to capture power profiles and automatically identify and categorize MELs in a scalable manner.

ITN Energy Systems will develop a low-cost coating film for use on existing "smart" windows. This film will further advance the energy savings potential and appearance of these windows and could result in approximately 2 quads of energy savings annually.

Mechanical Solutions, Inc. will develop a residential HVAC system featuring a highly efficient small centrifugal compressor. This project could provide a cheaper, more efficient, more environmentally friendly HVAC option for residential and commercial buildings.

Ecotope, Inc. will conduct energy code field studies in Washington, Oregon, Minnesota, and Illinois to measure the impact of energy codes on multifamily buildings, and identify opportunities for savings through increased compliance.

RTI International will develop and demonstrate novel luminaire designs that utilize advanced classroom lighting system technology, demonstrate the benefits of dynamic lighting, and collect feedback from education stakeholders. These efforts could increase the use of next-generation lighting in schools.

PPG Industries, Inc. will develop and demonstrate manufacturing processes that will enable commercialization of a large area and low-cost "integrated substrate" for rigid OLED SSL lighting. Enabling large volume manufacturing with these new processes will grow the OLED market, leading to a potential 1.51 quads of energy savings by 2030.

Gas Technology Institute will develop and conduct advanced modeling of the GHP system in order to provide a detailed assessment of the technology using regional weather data and detailed utility information for several New York locations and building types. The project will include a market assessment of the competitiveness of the variable refrigerant volume (VRV) GHP, including energy and economic benefits, the value of resiliency, and the value of self-powered heating and cooling systems for customers in New York. The Proposer will take into account the energy savings, operating costs, lifecycle costs, and greenhouse gas emissions in order to determine any energy, economic, or environmental merits of GHPs over standard HVAC equipment

The Contractor seeks to baseline test, install, and evaluate the performance of a 21kW micro-CHP system, that provides hot water and power as a packaged unit, at (2) Host Sites in NY. The proposed System shall feature a synchronous generator and black-start capability. The goal of the project is to provide manufacturers, building owners, and installers information regarding the deployment of micro-CHP systems, in order to promote a sustainable market for micro-CHP systems in NY. Once the Host Sites are selected, the System shall be independently tested and configured and the Host Sites shall be prepared for the proper integration of the Systems on-site. The Systems shall be installed and monitored for 12 months before developing a report to disseminate to the stakeholders.

This project will demonstrate a cost-effective pathway to achieving maximum energy efficiency in a grocery store. The project will identify and install a comprehensive costeffective energy efficiency upgrade package that utilizes innovative strategies such as advanced heating, ventilating and air conditioning systems, refrigerants, fans, air curtains, phase change materials, occupancy sensing measures and advanced lighting and controls. The project will also provide new design approaches that allow for rapid technology discovery and incorporation to ensure the most current technologies are implemented into the design.

This project will demonstrate a cost-effective pathway to achieving maximum energy efficiency in a grocery store. The project will identify and install a comprehensive costeffective energy efficiency upgrade package that utilizes innovative strategies such as advanced heating, ventilating and air conditioning systems, refrigerants, fans, air curtains, phase change materials, occupancy sensing measures and advanced lighting and controls. The project will also provide new design approaches that allow for rapid technology discovery and incorporation to ensure the most current technologies are implemented into the design.

Maryland Energy Administration will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.

Cree, Inc. will develop high-efficacy, cost-effective LED light engines for next-generation luminaires. The advancements made in this project could lead to more efficient LED lighting options.

The goal of this project is similar to the Unit Energy Savings (Deemed) Measure Development study with a focus on Circulatory Pumps across sectors. The study will fund the development of the Regional Technical Forum (RTF) workbook to present data to achieve RTF UES Planning Measures for Circulatory Pumps. This project will include data collection and analyses and does not involve field or primary research.

The project will implement lessons learned from previous high performance housing research and measure the results in two new houses built in partnership with Habitat for Humanity and homeowners. The houses will be built in a disadvantaged community in Stockton. Each house will include advanced architectural design features, high performance enclosures, advanced heating, ventilating and air conditioning systems, low-cost water heating systems and other advanced energy efficiency measures. One all-electric home and one mixed fuel (combined electric and natural gas) home will be built to demonstrate the respective costeffectiveness of each set of features. In addition to the measured results from actual occupancy, the project will develop a guide to affordable residential zero net energy design and construction, training curriculum, and new class offerings based on the project results for building practitioners.

This project uses modeling to analyze peak energy demand, and indoor air quality advantages of controlled minimum ventilation rates (VR); evaluates multiple technologies applicable to real-time measurement and control of ventilation rates; and uses the results to develop occupancy specific guidelines for using carbon dioxide (CO2) in demand controlled ventilation systems and for measurement of ventilation rates.

Oak Ridge National Laboratory (ORNL) will investigate a novel dehumidification process to avoid the excessive energy utilized by conventional approaches, through high-frequency mechanical vibration of ultrasonic transducers to eject adsorbed water in a liquid form.

This project will develop co-optimization strategies for distributed energy resources (DERs) to maximize customer and system value under existing CPUC-approved retail and California Independent System Operator (California ISO) wholesale tariff structures, future market structures and pricing, and the transactive energy pricing signals developed under agreement EPC-15-054. The project will test and configure two DER portfolios: a) one consisting of large retail customers and schools using battery energy storage, solar photovoltaics, and integrated load management, and b) the other consisting of hotels using passive thermal energy storage and energy efficiency. Both will be coupled with integrated load management, to respond to price signals as well as develop operational strategies that provide best practices for wholesale integration subject to the identified retail and wholesale tariffs and operational constraints.

The goal of this proposed effort is to conduct a multi-year testing and demonstration of all types of grid- and renewables-supporting services by a utility-scale battery energy storage system (BESS) at NRELs National Wind Technology Center (NWTC). This work will be conducted as a collaborative effort involving NREL and Powin Energy, the goal of which is to demonstrate via long-term testing the capabilities of BESS technologies to address operational and reliability challenges of integrating large amounts of variable renewable generation into the power system that are caused by resource variability, temporal mismatch between generation and demand, and forecast uncertainty.

Dais Analytic Corporation will develop membrane HVAC technology that offers improved energy efficiency and eliminates harmful refrigerants. This technology has the potential to lead to notable energy usage reductions and environmental benefits.

The University of Maryland will develop a heat exchanger that is 20% better than current designs in terms of size, weight, and performance. This next-generation heat exchanger will be designed for use in heat pumps and air conditioners and will drive energy savings in those applications.

This project will attempt to develop and demonstrate a novel fabrication process that eliminates the use of shadow masks during the OLED deposition process. The proposed system will allow blanket deposition of all organic and cathode layers everywhere on the substrate, eliminating the need for masks.

The goal of the project is to reduce the energy consumption of residential and commercial plug load devices, such as set-top boxes, TVs, computers and game consoles. The project will leverage mobile design practices, hardware components and energy management software kernels, and prove their effectiveness on virtual prototypes and reference designs of targeted plug load devices. Based on these findings, the recipient will develop, tune and deploy the design methodology guidelines for energy efficient plug load designs to the manufacturers of plug load devices and their hardware, software and tools suppliers. The recipient will also define and introduce a widely accepted industry standard through the Institute of Electrical and Electronics Engineers (IEEE) to support the newly developed unified design methodology and secure its long-term adoption and further evolution.

Lawrence Berkeley National Laboratory will produce an analysis of home upgrade programs and generate insights into replicable models that can positively impact the much broader energy efficiency program and business community across the U.S. This project supports the U.S. Department of Energy, state, regional, and local partners in reaching the overarching goal to reduce energy use intensity of existing homes by at least 40%.

Lawrence Berkeley National Laboratory will integrate heat and moisture transfer analysis of building envelop performance into one modeling system by adding moisture transfer to Lawrence Berkeley National Laboratory'es THERM engine.

Home Innovation Research Labs, Inc. will develop wall system design guidance for builders and improve the durability of envelope assembly systems. Findings from this project could play a critical role in improving the efficiency of home heating and cooling and could reduce HVAC energy use by at least 10%.

Building Science Corporation and partners will evaluate the use of a vapor control membrane, or diffusion vent, which could substantially reduce the risk of moisture issues in roof assemblies with fibrous insulation. This project will field test this solution in a cold climate new construction test house over three years, and will also test the approach in a high impact existing home weatherization application to be determined through stakeholder engagement.

BPA is seeking to expand multifamily energy efficiency incentive offerings for new and existing construction. The goal is to identify and work out the technical challenges associated with integrating technologies into multifamily buildings. Part of the BPA new multifamily program development work requires building energy modeling comparing multifamily buildings built to Washington State code versus DOE Zero Energy Ready (DOEZER) standards. The project will assess the low-rise multifamily DOE ZER program against the 2015 Washington State Energy Code (WSEC) to coordinate the DOE ZER modeling for a target home; and model DOE ZER specifications using SEEM and compare the results to existing 2015 WSEC energy use analysis. Energy savings will be summarized and included in a report describing the analysis methodology, DOEZER and WSEC modeling specifications and the above code savings using one set of target measures.

Design guidelines have helped accelerate the deployment strategies for central hot water systems in multifamily buildings through the Pacific Northwest. This project will deliver two design guidelines for multifamily hot water recirculation loops and central heat pump hot water systems for future use by architects, engineers, contractors and developers by distilling the best practices and findings from recently completed research. Each guideline will present the operating principles, recommended design choices, and give examples where appropriate.

BPA's Emerging Technology group is actively working on improving multifamily domestic hot water and space heating energy efficiency research. The goal is to identify and work out the technical challenges associated with integrating these technologies into multifamily buildings. This project is providing assistance for a feasibility design to determine if this concept is feasible and in turn, the potential mechanical system costs in aiding in the determination of potential utility incentives. The design study will determine if this central heat pump mechanical system is feasible and to determine project costs. The results of the study will be given to BPA and EWEB to determine if the project will move forward.

Lumenari, Inc. will develop a narrow-bandwidth red phosphor to improve phosphor-converted LED efficacy up to 28%. This will be accomplished through a combination of experimental and computational techniques to develop a novel host material for the selected emitter ion.

ThermoLift, Inc. will develop a natural-gas-driven heat pump/air conditioner that provides space heating, space cooling, and water heating for residential and commercial buildings. This device would offer 30% - 50% improved efficiency over standard heat pumps.

This project will develop a TL-N heat pump that will incorporate several substantial innovations to improve efficiency, reduce complexity and manufacturing cost and place TL-N at an attractive price point compared to traditional building HAC-HW systems. The goal of this project is to complete the research and development necessary to redesign the purely mechanical system previously developed into an advanced mechanical/electronic or mechatronic system, and will produce two working prototypes. The design, build, and testing of these prototypes will be accomplished in this effort. The TL-N mechatronic-driven system will incorporate several innovations to improve performance and reduce costs. These include an ultra-low-emission combustion burner, electronically-controlled actuators for cycle efficiency improvement, and innovative heat exchangers. Adaptation of these low cost mature technologies into the heat pump design will significantly increase operational efficiencies of the thermodynamic process while reducing cost.

Pages