Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 371 - 380 of 440

Project Abstract
The new simplified energy enthalpy model (SEEM) project will both document and review the Regional Technical Forum (RTF) residential heating load calibration process. This independent review of the RTF residential heating load calibration process provides due diligence for the recent RTF reduction of residential measure savings, which may result in many existing measures becoming not cost-effective. Also, this review will ensure the new Planning tool (being developed under TIP318) doesnt just incorporate the RTF process, but instead incorporates the most appropriate calibration process. The RTF residential heating load calibration process was questioned at the an RTF meeting because it assumes the same heating load calibration for any heating zone. This project is needed for both existing and future residential measures and the Residential Sector fully supports this project.
Project Abstract
The Building America Space Conditioning Standing Technical Committee and Expert Meeting reports identified high relative humidity as one of three issues with the highest technical priority for ensuring comfort in low-load homes. As such, the primary objective of this project is to evaluate factors that can contribute to high relative humidity in a home (variations in internal loads, equipment sizing, and equipment setup) and quantify their relative magnitude of impact on indoor relative humidity. A technical white paper will assess the sensitivity latent and sensible gains have on comfort and recommended system sizing. This will inform R&D needs for future BA/BTO work, provide actionable information to manufacturers on the equipment needs of low-load homes (see related project, Assessing the Market and Space-Conditioning Needs of Low-Load Homes), and provide system design and sizing guidance to contractors.
Project Abstract
In this project, the Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will demonstrate and evaluate LED lighting and controls. The LRC will first evaluate a range of commercially available but currently underutilized control products and systems, from simple stand-alone controls, to fixture-integrated products, and more complex automated control systems. The LRC will review the features, operations, and protocols of each system selected and will analyze the operation of these control products with various types of drivers commonly used in commercially available LED lighting products. Once this review is complete, the LRC will down select two or more control systems to demonstrate and evaluate in different areas of an existing office building. The LRC will also select and install LED lighting fixtures to retrofit the existing fluorescent lighting in the building. Once the systems are installed and commissioned, the LRC will evaluate the operation of the control and LED lighting systems and compare their performance, operation, energy savings, and occupant acceptance to each other, as well as to the previously existing lighting system.
Project Abstract
BPA secondary research on Single-Package, Vertical Heat Pumps (SPVHP) supports the energy savings potential, and non-energy benefits, such as better indoor air quality for modular school buildings. The project will fund the installation of up to 5 SPVHPs. Project activities include pre and post metering; units would be installed over the summer to be ready for testing in the new school year. Following the analyses of the metered data, the decision will be made whether to expand the field test to other locations.
Project Abstract
This project developed a retrofit energy toolkit for SMB and demonstrated the Toolkit's capabilities on three to four building test sites. The project obtained input from stakeholders on retrofit packages, compiled utility smart-meter data and developed a load shape analysis module. The project also looked at the indoor environmental quality effects on retrofitted small office and retail buildings, and developed a comprehensive web-based retrofit tool for business owners and energy professionals.
Project Abstract
Ecology Action of Santa Cruz will develop a platform for energy efficiency program administrators that offers a comprehensive set of energy-saving measures, integrated financing tools, and expedited project measurement and verification via a contractor-driven delivery model. The platform seeks to average at least 20% energy savings per building.
Project Abstract
BPA is working with NEEA to install indoor temperature loggers in 200 single family homes in the upcoming Residential Building Stock Assessments (RBSA) to collect indoor air temperature (IAT) data from (RBSA) homes during the next study period. This IAT data is needed to help establish required baselines for the Smart Thermostat measure initiatives. Installations will start in July 2016 and run through July 2017. Loggers will be collected after 9 months of data collection and analyses will begin. Interim results will be available starting September 2017.
Project Abstract
Smart Residential Thermostats Pilot with Franklin PUD. In partnership with Franklin PUD, BPA is conducting a Nest Learning ThermostatTM field pilot study. One hundred seventy three (173) thermostats were installed with the goal of evaluating the thermostats ability to control Residential Air Source Heat Pump operation and realize electricity savings through a pre/post utility billing regressions analysis study. Metering devices were installed in 9 homes to better understand how the Nest Thermostats control the heat pump systems and how people are interacting with these devices. Study results will be available mid year 2016.