Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 101 - 108 of 108

Project Abstract
The goal of this project is to further understanding of the energy saving potential of ducted minisplit heat pumps (DMS) compared to electric resistance heat in the side by side PNNL Lab Homes. This project will provide an experimental plan to evaluate the performance of ducted mini-splits. PNNL will review the current lab and field testing on ducted minisplits to determine the most relevant test case scenarios for this technology and develop an experimental plan to test ducted minisplits in the PNNL Lab Homes, using electric resistance heat and a heat pump as the two baseline cases. As part of the plan, PNNL will identify data needed to develop an EnergyPlus model for ducted minisplits in the Lab Homes which would allow for extrapolation of the energy savings of this technology to other climates or other buildings. If needed, In a second phase of the project, PNNL will implement the experimental plan in the Lab Homes.
Project Abstract
The team will integrate the developed sensing medium into PARCs previously developed flexible hybrid electronics (FHE) peel-and-stick platform that measures humidity, temperature, light, strain, and gases such as carbon monoxide, methane, ammonia, and hydrogen sulfide at an anticipated cost of <$15/node at scale
Project Abstract
This project will work directly with leading production builders and product manufacturers to demonstrate and validate high efficiency, variable capacity, ducted and ductless space conditioning systems with optimized comfort distribution and latent control for low load homes in humid climates. The team will investigate potential for better RH control via variable compressor speed, refrigerant flow, and coil air flow. The guidance and best practices from this work will result in 5-10% space conditioning energy savings in current DOE Zero Energy Ready Homes while maintaining or enhancing comfort.
Project Abstract
Variable Capacity Heat Pump Test Protocol for Northern Climates. BPA is collaborating with 7 Canadian utilities and Natural Resources Canada, with the assistance of the Canadian Standards Association, and US industry partners Electric Power Research Institute (EPRI), NEEA and Pacific Gas and Electric (PG&E) to develop a test protocol standard for Variable Capacity Heat Pumps (VCHP) designed for Cold Climates. This test protocol means BPA will be able to confidently predict the performance of new VCHP market entrant without expensive field testing. BPA has engaged EPRI to participate in the international proceedings and to test and verify the final protocol recommendation before formal adoption by BPA.
Project Abstract
Steven Winter Associates will work with manufacturing partner Mitsubishi Electric to develop, test, and demonstrate an integrated energy recovery ventilation and heat pump system for residential buildings.
Project Abstract
BPA has not provided any variable refrigerant flow (VRF) system incentives because of challenges estimating and verifying energy savings. This project will leverage BPAs AirNW Trade Ally network to identify and document VRF installations so that billing analysis can be done to determine energy savings. Activities include: billing analyses on 10 sites where the VRF system installation was the only change affecting electricity use.