Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 6 of 6

Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
Hudson Fisonic will develop, design, manufacture, and install FDs for space heating and domestic hot water at the Woolworth building (57 stories, 900k ft2). The performance of the FD will be monitored for 12 months to determine the steam and potable water savings from use of this technology. Hudson Fisonic will start the commercialization of the FD technology by engaging the manufacturer - Division LLC Corporation, located in Long Island City, New York, in fabricating and preparing the necessary facilities and equipment for commercial manufacturing of FDs
Project Abstract
The project includes feasibility and design studies followed by demonstration of a large central reverse cycle chiller (RCC) or heat pump water heaters for energy efficient production of domestic hot water in multifamily residential projects. Feasibility and design studies were completed in 2010. The first installation was completed in November 2012; a second installation was completed in the Spring 2013. The next phase of the project will include measurement and verification of energy savings. The project will conclude with a final report of lessons learned and recommendations for future applications of this technology. This project will look to answer the following research question: quantify the energy savings using a large heat pump water heater (or called RCC) vs. electric resistance domestic hot water in a multifamily (MF) application to prove the concept, and understand technical challenges and whether this is a good technology for multifamily sector.
Project Abstract
The Contractor seeks to baseline test, install, and evaluate the performance of a 21kW micro-CHP system, that provides hot water and power as a packaged unit, at (2) Host Sites in NY. The proposed System shall feature a synchronous generator and black-start capability. The goal of the project is to provide manufacturers, building owners, and installers information regarding the deployment of micro-CHP systems, in order to promote a sustainable market for micro-CHP systems in NY. Once the Host Sites are selected, the System shall be independently tested and configured and the Host Sites shall be prepared for the proper integration of the Systems on-site. The Systems shall be installed and monitored for 12 months before developing a report to disseminate to the stakeholders.
Project Abstract
This project will develop a TL-N heat pump that will incorporate several substantial innovations to improve efficiency, reduce complexity and manufacturing cost and place TL-N at an attractive price point compared to traditional building HAC-HW systems. The goal of this project is to complete the research and development necessary to redesign the purely mechanical system previously developed into an advanced mechanical/electronic or mechatronic system, and will produce two working prototypes. The design, build, and testing of these prototypes will be accomplished in this effort. The TL-N mechatronic-driven system will incorporate several innovations to improve performance and reduce costs. These include an ultra-low-emission combustion burner, electronically-controlled actuators for cycle efficiency improvement, and innovative heat exchangers. Adaptation of these low cost mature technologies into the heat pump design will significantly increase operational efficiencies of the thermodynamic process while reducing cost.
Project Abstract
Variable Capacity Heat Pump Test Protocol for Northern Climates. BPA is collaborating with 7 Canadian utilities and Natural Resources Canada, with the assistance of the Canadian Standards Association, and US industry partners Electric Power Research Institute (EPRI), NEEA and Pacific Gas and Electric (PG&E) to develop a test protocol standard for Variable Capacity Heat Pumps (VCHP) designed for Cold Climates. This test protocol means BPA will be able to confidently predict the performance of new VCHP market entrant without expensive field testing. BPA has engaged EPRI to participate in the international proceedings and to test and verify the final protocol recommendation before formal adoption by BPA.