Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 12 of 12

Project Abstract

The Window Covering Manufacturing Association will create the Attachments Energy Rating Council to develop an independent rating, certification, labeling, and performance verification program for window attachments. This program will help drive market penetration of energy-saving products and further innovation in the industry.

Project Abstract
This project will evaluate the effectiveness of luminscent solar concentrators with PV materials. RPI will determine the extinction coefficients for candidate LSC materials. The extinction coefficient will be used in Monte Carlos simulation, along with other experimental parameters such as quantum efficiency and absorption and emission spectra, to predict optimum shape and species concentration that will lead to LSC-PV systems with enhanced system level efficiency. The most promising designs will be fabricated into coupled LSC-PV systems and their performance will be characterized with laboratory testing.
Project Abstract
This project will assess the DC power market to understand distribution opportunities, technical and analytical gaps for residential and commercial applications, and inform the analysis, design, and planning capabilities of these loads. The team will extend DOEs open-source whole-building energy modeling tools platformthe EnergyPlus engine and OpenStudio software development kitwith power distribution system modeling capabilities to enable evaluation of energy and economic benefits of AC, DC, and hybrid power distribution systems.
Project Abstract
The goal of this research project is to determine if it is possible to pre-heat water for swimming pools to save energy. The study is designed to show the efficacy of this application as well as the associated energy savings. In 2016, BPA engineering collected baseline operation data on the existing electric resistance water heater for a residential swimming pool. Early in 2017, the CO2HPWH was installed and monitored. The initial results showed that the system was under performing and a number of modifications are being considered. The current plan is to implement the modifications and monitor the new design through December 2017 to allow for warm and cold weather operation. A final paper will be prepared by February 2018. While this study is focused on the residential sector, the nature and results of this study are also applicable to water heating EE projects in the commercial sector. BPA will generate a summary brief which will inform the region of the results. Its important to build the body of knowledge for CO2 heat pumps and demonstrate the efficacy of a new use case.
Project Abstract
The goal of the project is to collect both historical and current water use data as it relates to the installation and operation of Smart Irrigation Controllers for residential and commercial landscaping applications in BPA service territory. BPA will work with customer utilities to install Smart Irrigation Controllers in residential and commercial landscaping applications to determine the water and electrical energy savings of each installation. The performance period of the study will include the entire 2016 irrigation watering season and a final report will be due in December 2017.
Project Abstract
In the 7th Power Plan in the Pacific NW region, Advanced Power Strips have been identified as having significant savings potential. BPA would like to test this technology in commercial settings to determine energy savings; to understand unit performance; identify best practices for installation and gather feedback from end users. BPA will work with utilities to identify potential sites.
Project Abstract
This project will help address the challenge of identifying loads within the long tail of consumption by integrating the previously developed PowerBlade wireless AC plug-through meters to measure real, reactive, and apparent power with load monitoring based on extracting high-fidelity electrical waveform features to capture power profiles and automatically identify and categorize MELs in a scalable manner.
Project Abstract
The OEI will capitalize on existing DOE investments to create an integrated open source technology platformthe OpenEfficiency Platform (OEP)capable of supporting a range of energy efficiency program types. Working closely with a group of utility program administrators, the OEI will support the design, planning, and use of the OEP in a series of commercial pilot programs for whole building energy efficiency, local government benchmarking, and auditing.
Project Abstract
Fraunhofer USA Center for Sustainable Energy Systems Inc. and partners will develop models that use communicating thermostat data and interval electricity and gas data to remotely identify homes with significant energy savings opportunities. The tool will identify the top 20% of homes with the greatest potential for energy savings from insulation, air sealing, and/or heating system upgrades, reducing the number of unnecessary energy audits.
Project Abstract
The Association of Bay Area Governments will perform modeling analysis in nine Bay Area counties to help small and medium businesses achieve the cost effective energy efficiency improvements. The BayREN Integrated Commercial Retrofits project will modify and enhance existing open source tools to perform large-scale building energy modeling analysis on commercial buildings throughout the San Francisco Bay Area.
Project Abstract
Lime Energy and partners will implement an energy efficiency service delivery model for small and medium size businesses in low-income communities, aiming to complete more than 1,000 retrofits featuring a performance guarantee and meter-validated savings. The results will create 60 jobs and generate $30 million in economic activity.