Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 15 of 15

Project Abstract
Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.
Project Abstract
The Virginia Tech Advanced Research Institute will develop a software platform that improves sensing and control of equipment in small and medium-sized commercial buildings. The platform will be able to optimize electricity usage to reduce energy consumption and help implement demand response.
Project Abstract
The City of Seattle will engage with building owners, managers, and service providers to develop market expertise to train local building operations professionals to more effectively tune-up existing buildings, which could reduce city energy costs by $1.5 million annually. Professionals will tune-up 70-80 buildings with 10-20% energy savings, and complete capital retrofits to 20-30 buildings providing 35% energy savings, for a total of 1 billion kBtu annual savings.
Project Abstract
The University of California-Berkeley and its partner, Building Robotics, will create, evaluate and establish the technical foundations for secure and easy to deploy building energy efficiency applications utilizing pervasive, low-cost wireless sensors integrated with traditional Building Management Systems (BMS), consumer-sector building components, personalized smartphone devices, and powerful data analytics.
Project Abstract
Carnegie Mellon University will design, implement, and evaluate a human-in-the-loop sensing and control system for energy efficiency of heating, ventilation, air conditioning (HVAC), and lighting systems based on a novel occupancy sensor. Through occupant sensing and real-time data collection, this project will reduce energy waste, targeting a 20% energy savings, while increasing occupant comfort by accurately estimating occupants in an area to overcome current HVAC system operations.
Project Abstract
The project will study the integration trade-offs, cost and energy optimization of daylighting, LED electric lighting, plug load sensors and zonal air plow controls. If widely adopted, the integrated controls package in this project could have savings up to 750 Tbtu per year.
Project Abstract
This project studies the synergistic interactions of daylighting, plug controls, automated fault detection and diagnostics (AFDD) and HVAC optimization. If widely used, the package of daylighting techniques, plug loads, AFDD and controls for HVAC systems validated in this project could have savings of 756 Tbtu per year.
Project Abstract
PARC, A Xerox Company, in partnership with Energy ETC Inc., will develop a wireless system of peel-and-stick sensor nodes that are powered by radio frequency hubs, relaying data to building management systems that can significantly reduce energy use. The wireless sensors and radio frequency hubs provide an opportunity to increase building energy efficiency by gathering and compiling data needed for building management.
Project Abstract
Drexel University will develop an innovative and cost-effective automated fault detection and diagnostics tool that better identifies issues related to building energy use. This project is expected to impact a total energy market of 7,306 TBTU, with projected national energy savings of 1,096 TBTU with a simple payback time per installation of less than 1 year.