Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 4 of 4

Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will design and develop innovative LED lighting solutions for three key general illumination product categories. These solutions are a best-in-class medium, screw-base replacement lamp, linear tubular light emitting diode (TLED) replacement lamps and spectrally optimized, dedicated LED luminaires. Product design requirements will be based on consumer light quality and functional performance preferences determined through a series of unique laboratory-based consumer preference and product characterization studies
Project Abstract
This project will identify, quantify and evaluate the incremental costs and benefits of demand responsive (DR) lighting controls system requirements in the California Energy Code across existing, non-residential building stock. The project will focus on the incremental costs and benefits associated with adding the DR functionality to enhance general lighting upgrades in existing, non-residential buildings to enable them to act as DR resources.
Project Abstract
This project will identify, quantify and evaluate the incremental costs and benefits of demand responsive (DR) lighting controls system requirements in the California Energy Code across existing, non-residential building stock. The project will focus on the incremental costs and benefits associated with adding the DR functionality to enhance general lighting upgrades in existing, non-residential buildings to enable them to act as DR resources.