Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 26 of 26

Project Abstract
The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.
Project Abstract
Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.
Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.
Project Abstract
Multifamily (MF) is hugely underserved in Residential energy efficiency (EE) Programs and part of our MF ductless heat pump (DHP) strategy is to look at different MF use cases and identify which MF use cases provide a higher EE potential. So far DHP results in MF are mixed and this project will assess the energy use and savings of ductless heat pumps in mid-rise MF buildings. This study offers a unique opportunity for a side by side comparison of heat pumps and electric resistance heat within a single apartment building with 278 apartments. The project would collect billing data on all the individual units, conduct an analysis to disaggregate heating, cooling, and baseload energy use, and compare the two types of heating systems.
Project Abstract
Seven alternative ductless heat pump (DHP) solutions were identified during the 2014 Washington State University (WSU) Assessment Study, including multiple internal heads, ducting between rooms, etc. Two solutions were recommended for further research. Technology and research plans need to be developed for these alternatives. Research plans will need to be developed for this project.
Project Abstract
The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.
Project Abstract
The 7th Power Plan has targeted 261aMWs of savings for embedded data centers and BPA would like to develop a series of new measures to acquire these savings. Embedded Data Centers are defined as server rooms located on-site in commercial buildings which are larger than server closets but smaller than enterprise data centers. This project will inform and streamline custom projects for future Data Center Air Flow Management retrofits which may include multiple data center HVAC retrofits, including blanking panels, raising space temperatures, containment and air flow management. Up to two grants will be awarded to participate in this field study to test Data Center Air Flow Management retrofits and other HVAC solutions for Embedded Data Centers. This field study will also demonstrate and verify a Data Center Air Flow Management (AFM) energy savings calculator developed by Seattle City Light in the Data Center Track and Tune Project.
Project Abstract
This project will apply the framework created in the prior research to develop early deployment plans for three additional technologies and to guide early deployments with multiple utilities for five technologies, two of which were planned in prior research. The three technologies being deployed are heat pump water heaters, led menu boards, and engine generator block heaters.
Project Abstract
Commercial HVAC Efficient Pumping Technology has been identified by BPA as having significant electrical energy savings potential. Grants will be awarded to BPA customer utilities to test CHEP installation for Commercial, Agricultural and Industrial applications. Pump retrofits include integrated, variable-speed HVAC system pumps ranging in size between 1/3 and 10 horse power with controls. To date, three utilities have requested financial assistance for installations. The units will be installed in 2017 and utilities will provide reports within one year to report on system performance and present information on potential market barriers.
Project Abstract
The goal of this grant is to share the cost for the design, installation, and commissioning to replace Roof Top Units (RTU) with Heat Recovery Ventilation (HRV) and Variable Capacity Heat Pump (VCHP) systems. In 2016, Northwest Energy Efficiency Alliance (NEEA) identified this potential RTU replacement strategy to help meet the regions energy efficiency targets and conducted a proof of concept study for this new replacement system. NEEAs preliminary analysis estimates that an HRV and VC HP system could be combined to save over seventy percent of the energy used by RTUs. BPA is interested in obtaining field data for additional systems in the Pacific Northwest. The expected results from this project include the following: HRV and VC HP system cost effectiveness information; System performance data; Verification that whole-building billing analysis is an adequate methodology to measure savings, and Identification of best practices for installation and commissioning based on feedback from the owner, utility, designer, contractor and occupants.
Project Abstract
The project includes feasibility and design studies followed by demonstration of a large central reverse cycle chiller (RCC) or heat pump water heaters for energy efficient production of domestic hot water in multifamily residential projects. Feasibility and design studies were completed in 2010. The first installation was completed in November 2012; a second installation was completed in the Spring 2013. The next phase of the project will include measurement and verification of energy savings. The project will conclude with a final report of lessons learned and recommendations for future applications of this technology. This project will look to answer the following research question: quantify the energy savings using a large heat pump water heater (or called RCC) vs. electric resistance domestic hot water in a multifamily (MF) application to prove the concept, and understand technical challenges and whether this is a good technology for multifamily sector.
Project Abstract
Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps (DHPs) with back up resistance heating. If the lab test shows that Ducted mini splits provide more sufficient savings then a field test will be implemented.
Project Abstract
BPA funded a small field test through NEEA to understand if DHPs could be installed by owners to reduce installation costs to improve cost effectiveness. NEEA received funding to track the 4 installations. There were key learnings from each installation which were documented to share with the region. Preliminary results were reported earlier this year to members of the BPA and NEEA by Ecotope who managed the installations.
Project Abstract
In 2013, BPA received an unsolicited proposal for a case study for a side-by-side comparison of a geothermal heat pump and variable refrigerant flow (VRF) system in nearly identical multifamily housing units in Tacoma, Washington. The project provided a unique opportunity to evaluate these two technologies while providing an application for multifamily housing. The project will determine how the seasonal performance of the two systems for space conditioning and production of hot water compares. The following information will be provided for the operation of both units: quantified savings and costs over a specific baseline; understanding of the engineering design, installation, ownership, and possible utility barriers; quantified annual energy savings, benefits, and costs; documented magnitude and longevity of the incremental electric energy savings; documented operation and energy use; and described energy savings time of occurrence and duration, load shape, and lifetime.
Project Abstract
Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps DHPs with back up resistance heating. This research project will utilize the Pacific Northwest National Laboratory (PNNL) Lab Homes to test how the performance of a multi-zone ducted mini split application compares to the traditional single zone DHP with back up resistance heat in a single family application. The PNNL Lab homes provide the opportunity to conduct a side by side experiment with identical homes. Results of this research will determine if BPA should pursue additional field tests.
Project Abstract
This project proposes to research an issue which was identified during the current reverse cycle chiller (RCC) study regarding distributed heat loss. This project builds on an existing BPA funded multifamily heat pump reverse cycle chiller project, TIP 140. The results of this project have been good. This is a technology which has potential for multifamily and other applications in the Pacific Northwest. The TIP 140 project results identified that hot water recirculation systems can reduce efficiency by 30-40%. Additional work needs to be done to quantify the energy losses associated with typical hot water distribution systems. This research project contains a comprehensive approach to understanding and reducing energy losses in hot water recirculation systems. There are three work areas. The primary area is a pilot study to set up three different hot water distribution systems and understand the impact these three different approaches will have on the overall system efficiency. The second area is to meter actual heat loss from recirculation systems in two to three existing midrise multifamily buildings to better characterize the baseline. The third area is to directly measure performance of inverter-driven heat pump water heaters in the field with and without the impact of recirculation loops.
Project Abstract
This demonstration project will test the viability of replacing an RTU with Variable Capacity Heat Pump, Heat Recovery Ventilation (HRV) and a Dedicated Outside Air Source technologies. This project supports NEEA's HRV proof of concept project, by supporting a cold-climate installation at a BPA utility's building estimated to save 70% of the RTU energy use. Demonstration will inform future streamlined custom measures.
Project Abstract
BPA secondary research on Single-Package, Vertical Heat Pumps (SPVHP) supports the energy savings potential, and non-energy benefits, such as better indoor air quality for modular school buildings. The project will fund the installation of up to 5 SPVHPs. Project activities include pre and post metering; units would be installed over the summer to be ready for testing in the new school year. Following the analyses of the metered data, the decision will be made whether to expand the field test to other locations.
Project Abstract
BPA is working with NEEA to install indoor temperature loggers in 200 single family homes in the upcoming Residential Building Stock Assessments (RBSA) to collect indoor air temperature (IAT) data from (RBSA) homes during the next study period. This IAT data is needed to help establish required baselines for the Smart Thermostat measure initiatives. Installations will start in July 2016 and run through July 2017. Loggers will be collected after 9 months of data collection and analyses will begin. Interim results will be available starting September 2017.
Project Abstract
To reduce energy use in homes that are becoming tighter, mechanical ventilation is added to maintain Indoor Air Quality (IAQ). Smart ventilation technologies are being developed to minimize the energy impact of mechanical ventilation while simultaneously maintaining IAQ. This project will demonstrate the energy savings associated with a smart ventilation technology through a combination of field testing and simulations. The target is to get close to heat recovery ventilation (HRV) performance at much lower cost and complexity; and greater reliability through smart control of simple exhaust (or supply) fans. The project will also develop recommendations for utility programs, other energy efficiency programs and for codes/standards on how to calculate credits for smart ventilation systems.
Project Abstract
The goal of this project is to further understanding of the energy saving potential of ducted minisplit heat pumps (DMS) compared to electric resistance heat in the side by side PNNL Lab Homes. This project will provide an experimental plan to evaluate the performance of ducted mini-splits. PNNL will review the current lab and field testing on ducted minisplits to determine the most relevant test case scenarios for this technology and develop an experimental plan to test ducted minisplits in the PNNL Lab Homes, using electric resistance heat and a heat pump as the two baseline cases. As part of the plan, PNNL will identify data needed to develop an EnergyPlus model for ducted minisplits in the Lab Homes which would allow for extrapolation of the energy savings of this technology to other climates or other buildings. If needed, In a second phase of the project, PNNL will implement the experimental plan in the Lab Homes.
Project Abstract
Variable Capacity Heat Pump Test Protocol for Northern Climates. BPA is collaborating with 7 Canadian utilities and Natural Resources Canada, with the assistance of the Canadian Standards Association, and US industry partners Electric Power Research Institute (EPRI), NEEA and Pacific Gas and Electric (PG&E) to develop a test protocol standard for Variable Capacity Heat Pumps (VCHP) designed for Cold Climates. This test protocol means BPA will be able to confidently predict the performance of new VCHP market entrant without expensive field testing. BPA has engaged EPRI to participate in the international proceedings and to test and verify the final protocol recommendation before formal adoption by BPA.
Project Abstract
BPA has not provided any variable refrigerant flow (VRF) system incentives because of challenges estimating and verifying energy savings. This project will leverage BPAs AirNW Trade Ally network to identify and document VRF installations so that billing analysis can be done to determine energy savings. Activities include: billing analyses on 10 sites where the VRF system installation was the only change affecting electricity use.