Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 51 - 64 of 64

Project Abstract
In response to increased use of adaptive, exterior lighting products, and their potential for substantial energy savings, utilities are interested in creating a deemed incentive program focused on this technology. A simplified method is necessary to easily calculate expected energy savings and associated incentives. Energy savings for adaptive luminaires is clearly tied to occupancy patterns. To support a deemed incentive program, standardized occupancy profiles for a variety of nine key non-residential exterior spaces will be developed. These profiles may be used to easily calculate expected energy savings and associated incentives for a proposed adaptive exterior lighting project. Questions to address include: What is the occupancy/vacancy pattern for the nine building types? How does the rate vary across the different types of buildings? What are the variables that impact the occupancy/vacancy?
Project Abstract
BPA secondary research on Single-Package, Vertical Heat Pumps (SPVHP) supports the energy savings potential, and non-energy benefits, such as better indoor air quality for modular school buildings. The project will fund the installation of up to 5 SPVHPs. Project activities include pre and post metering; units would be installed over the summer to be ready for testing in the new school year. Following the analyses of the metered data, the decision will be made whether to expand the field test to other locations.
Project Abstract
BPA is working with NEEA to install indoor temperature loggers in 200 single family homes in the upcoming Residential Building Stock Assessments (RBSA) to collect indoor air temperature (IAT) data from (RBSA) homes during the next study period. This IAT data is needed to help establish required baselines for the Smart Thermostat measure initiatives. Installations will start in July 2016 and run through July 2017. Loggers will be collected after 9 months of data collection and analyses will begin. Interim results will be available starting September 2017.
Project Abstract
Smart Residential Thermostats Pilot with Franklin PUD. In partnership with Franklin PUD, BPA is conducting a Nest Learning ThermostatTM field pilot study. One hundred seventy three (173) thermostats were installed with the goal of evaluating the thermostats ability to control Residential Air Source Heat Pump operation and realize electricity savings through a pre/post utility billing regressions analysis study. Metering devices were installed in 9 homes to better understand how the Nest Thermostats control the heat pump systems and how people are interacting with these devices. Study results will be available mid year 2016.
Project Abstract
To reduce energy use in homes that are becoming tighter, mechanical ventilation is added to maintain Indoor Air Quality (IAQ). Smart ventilation technologies are being developed to minimize the energy impact of mechanical ventilation while simultaneously maintaining IAQ. This project will demonstrate the energy savings associated with a smart ventilation technology through a combination of field testing and simulations. The target is to get close to heat recovery ventilation (HRV) performance at much lower cost and complexity; and greater reliability through smart control of simple exhaust (or supply) fans. The project will also develop recommendations for utility programs, other energy efficiency programs and for codes/standards on how to calculate credits for smart ventilation systems.
Project Abstract
This data gathering and analysis project will develop reliable estimates of energy savings for Networked Lighting Controls (NLC) project and on a larger scale, accelerate the deployment and market adoption of NLC in Commercial Buildings. Advanced Lighting Controls has significant potential to accelerate LED lighting adoption. In a recent study by LBNL, multiple lighting control strategies saved an average of 38% of energy savings. However, market adoption on NLC/Advance Lighting Controls is estimated to be less then 1%. This project is designed to help BPA determine appropriate program designs, incentives, training and Qualified Products to increase deployment of NLC. The project will request data from several utilities including BPA about energy savings achieved in recent projects. BPA is partnering with Efficiency Forward (formerly DLC) to complete this project.
Project Abstract
The goal of this project is to further understanding of the energy saving potential of ducted minisplit heat pumps (DMS) compared to electric resistance heat in the side by side PNNL Lab Homes. This project will provide an experimental plan to evaluate the performance of ducted mini-splits. PNNL will review the current lab and field testing on ducted minisplits to determine the most relevant test case scenarios for this technology and develop an experimental plan to test ducted minisplits in the PNNL Lab Homes, using electric resistance heat and a heat pump as the two baseline cases. As part of the plan, PNNL will identify data needed to develop an EnergyPlus model for ducted minisplits in the Lab Homes which would allow for extrapolation of the energy savings of this technology to other climates or other buildings. If needed, In a second phase of the project, PNNL will implement the experimental plan in the Lab Homes.
Project Abstract
The objective of the research is to test the energy performance and demand reduction capabilities of the high-efficiency cellular shading devices and associated automated control strategies in the PNNL matched pair of laboratory homes. Tests outcomes will measure the cost-effective materials for existing homes. examine persistence of savings through Automated Operation of Dynamic Systems, and examine the benefits to of coordinating Cellular Shades with HVAC Demand-Response Events.
Project Abstract
The research goals of the project will to identify what types of systems would provide the best baseline data for the Pacific NW (PNW). Utilizing a new portable metering system that can measure temperatures, pressures, true power, heat load, and Energy Efficiency Ratio (EER) of Commercial Refrigeration, units will be installed at four different grocery stores. Sites will be selected that would be open to a large scale energy conservation project that modifies the refrigeration system. The portable Climacheck systems will remain in place a full year after the project to study the effect on the new system and quantify energy savings. After 1 year of post project data collection, the Climacheck systems may be moved around more frequently to collect shorter-term period (three, six, or nine month) data on additional sites and system types.
Project Abstract
Variable Capacity Heat Pump Test Protocol for Northern Climates. BPA is collaborating with 7 Canadian utilities and Natural Resources Canada, with the assistance of the Canadian Standards Association, and US industry partners Electric Power Research Institute (EPRI), NEEA and Pacific Gas and Electric (PG&E) to develop a test protocol standard for Variable Capacity Heat Pumps (VCHP) designed for Cold Climates. This test protocol means BPA will be able to confidently predict the performance of new VCHP market entrant without expensive field testing. BPA has engaged EPRI to participate in the international proceedings and to test and verify the final protocol recommendation before formal adoption by BPA.
Project Abstract
BPA has not provided any variable refrigerant flow (VRF) system incentives because of challenges estimating and verifying energy savings. This project will leverage BPAs AirNW Trade Ally network to identify and document VRF installations so that billing analysis can be done to determine energy savings. Activities include: billing analyses on 10 sites where the VRF system installation was the only change affecting electricity use.
Project Abstract
Ecotope, in partnership with Vulcan Real Estate and Seattle City Light proposes to design, pilot and verify a heat pump water heating system for large multifamily buildings using the building sewage as a heat source. The waste water heat pump (WWHP) will recover waste heat streams from the building and heat water for domestic use at extremely high performance levels. The system will be built in a large multifamily building with approximately 400 apartment units. The project team will conduct a feasibility study of the system concept and a numerical model to predict the best equipment sizing and control algorithms. With the feasibility demonstrated the team will move on to full system design in a multifamily building. The team will write a measurement plan to monitor the energy use of the system. The team will commission the system, optimize its operation and prepare a set of design guidelines to be used throughout the engineering community.