Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 201 - 204 of 204

Project Abstract
This project will work directly with leading production builders and product manufacturers to demonstrate and validate high efficiency, variable capacity, ducted and ductless space conditioning systems with optimized comfort distribution and latent control for low load homes in humid climates. The team will investigate potential for better RH control via variable compressor speed, refrigerant flow, and coil air flow. The guidance and best practices from this work will result in 5-10% space conditioning energy savings in current DOE Zero Energy Ready Homes while maintaining or enhancing comfort.
Project Abstract
Steven Winter Associates will work with manufacturing partner Mitsubishi Electric to develop, test, and demonstrate an integrated energy recovery ventilation and heat pump system for residential buildings.
Project Abstract
Ecotope, in partnership with Vulcan Real Estate and Seattle City Light proposes to design, pilot and verify a heat pump water heating system for large multifamily buildings using the building sewage as a heat source. The waste water heat pump (WWHP) will recover waste heat streams from the building and heat water for domestic use at extremely high performance levels. The system will be built in a large multifamily building with approximately 400 apartment units. The project team will conduct a feasibility study of the system concept and a numerical model to predict the best equipment sizing and control algorithms. With the feasibility demonstrated the team will move on to full system design in a multifamily building. The team will write a measurement plan to monitor the energy use of the system. The team will commission the system, optimize its operation and prepare a set of design guidelines to be used throughout the engineering community.