Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 1 - 18 of 18

Project Abstract
Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.
Project Abstract
During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.
Project Abstract
The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.
Project Abstract
Multifamily (MF) is hugely underserved in Residential energy efficiency (EE) Programs and part of our MF ductless heat pump (DHP) strategy is to look at different MF use cases and identify which MF use cases provide a higher EE potential. So far DHP results in MF are mixed and this project will assess the energy use and savings of ductless heat pumps in mid-rise MF buildings. This study offers a unique opportunity for a side by side comparison of heat pumps and electric resistance heat within a single apartment building with 278 apartments. The project would collect billing data on all the individual units, conduct an analysis to disaggregate heating, cooling, and baseload energy use, and compare the two types of heating systems.
Project Abstract
The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.
Project Abstract
The goal of this research project is to determine if it is possible to pre-heat water for swimming pools to save energy. The study is designed to show the efficacy of this application as well as the associated energy savings. In 2016, BPA engineering collected baseline operation data on the existing electric resistance water heater for a residential swimming pool. Early in 2017, the CO2HPWH was installed and monitored. The initial results showed that the system was under performing and a number of modifications are being considered. The current plan is to implement the modifications and monitor the new design through December 2017 to allow for warm and cold weather operation. A final paper will be prepared by February 2018. While this study is focused on the residential sector, the nature and results of this study are also applicable to water heating EE projects in the commercial sector. BPA will generate a summary brief which will inform the region of the results. Its important to build the body of knowledge for CO2 heat pumps and demonstrate the efficacy of a new use case.
Project Abstract
This supplemental project has been designed to provide utilities a means of working together in a coordinated fashion to test this concept in field environments. The goals of this supplemental project are: 1. To prove the performance of universal Consumer Electronics Association (CEA) 2045 communications port (comm port) 2. Convince manufacturers that the installation of a simple comm port is very low-cost, and makes their equipment easy to incorporate into any utility demand response (DR) program nationwide so that it could eventually become standard practice on all water heaters. If that can be achieved, then the question of whether or not a customer participates in a utility DR program becomes a simpler customer choice.
Project Abstract
The project includes feasibility and design studies followed by demonstration of a large central reverse cycle chiller (RCC) or heat pump water heaters for energy efficient production of domestic hot water in multifamily residential projects. Feasibility and design studies were completed in 2010. The first installation was completed in November 2012; a second installation was completed in the Spring 2013. The next phase of the project will include measurement and verification of energy savings. The project will conclude with a final report of lessons learned and recommendations for future applications of this technology. This project will look to answer the following research question: quantify the energy savings using a large heat pump water heater (or called RCC) vs. electric resistance domestic hot water in a multifamily (MF) application to prove the concept, and understand technical challenges and whether this is a good technology for multifamily sector.
Project Abstract
In 2013, BPA received an unsolicited proposal for a case study for a side-by-side comparison of a geothermal heat pump and variable refrigerant flow (VRF) system in nearly identical multifamily housing units in Tacoma, Washington. The project provided a unique opportunity to evaluate these two technologies while providing an application for multifamily housing. The project will determine how the seasonal performance of the two systems for space conditioning and production of hot water compares. The following information will be provided for the operation of both units: quantified savings and costs over a specific baseline; understanding of the engineering design, installation, ownership, and possible utility barriers; quantified annual energy savings, benefits, and costs; documented magnitude and longevity of the incremental electric energy savings; documented operation and energy use; and described energy savings time of occurrence and duration, load shape, and lifetime.
Project Abstract
BPA is seeking to expand multifamily energy efficiency incentive offerings for new and existing construction. The goal is to identify and work out the technical challenges associated with integrating technologies into multifamily buildings. Part of the BPA new multifamily program development work requires building energy modeling comparing multifamily buildings built to Washington State code versus DOE Zero Energy Ready (DOEZER) standards. The project will assess the low-rise multifamily DOE ZER program against the 2015 Washington State Energy Code (WSEC) to coordinate the DOE ZER modeling for a target home; and model DOE ZER specifications using SEEM and compare the results to existing 2015 WSEC energy use analysis. Energy savings will be summarized and included in a report describing the analysis methodology, DOEZER and WSEC modeling specifications and the above code savings using one set of target measures.
Project Abstract
Design guidelines have helped accelerate the deployment strategies for central hot water systems in multifamily buildings through the Pacific Northwest. This project will deliver two design guidelines for multifamily hot water recirculation loops and central heat pump hot water systems for future use by architects, engineers, contractors and developers by distilling the best practices and findings from recently completed research. Each guideline will present the operating principles, recommended design choices, and give examples where appropriate.
Project Abstract
The objective of the research is to test the energy performance and demand reduction capabilities of phase change material (PCM) in conditioned buildings at a USAR site. PCM is a substance used to increase the thermal mass of a building due to its ability to melt and solidify at certain temperatures, providing the capability to store and release large amounts of thermal energy. PCM works in conjunction with traditional insulation to decrease heat gain (or loss) by storing and releasing heat to the conditioned space at different times of the day
Project Abstract
This project proposes to research an issue which was identified during the current reverse cycle chiller (RCC) study regarding distributed heat loss. This project builds on an existing BPA funded multifamily heat pump reverse cycle chiller project, TIP 140. The results of this project have been good. This is a technology which has potential for multifamily and other applications in the Pacific Northwest. The TIP 140 project results identified that hot water recirculation systems can reduce efficiency by 30-40%. Additional work needs to be done to quantify the energy losses associated with typical hot water distribution systems. This research project contains a comprehensive approach to understanding and reducing energy losses in hot water recirculation systems. There are three work areas. The primary area is a pilot study to set up three different hot water distribution systems and understand the impact these three different approaches will have on the overall system efficiency. The second area is to meter actual heat loss from recirculation systems in two to three existing midrise multifamily buildings to better characterize the baseline. The third area is to directly measure performance of inverter-driven heat pump water heaters in the field with and without the impact of recirculation loops.
Project Abstract
Via a controlled demonstration, this project will provide economic justification and a plan for a market transformation effort to cause all new water heaters sold in the Pacific North West to be sold with the CEA-2045 modular communication interface and to include demand responsive behavior built into the electronic controls so the water heater will be DR ready. Update: This project is progressing. Recently, utility grants were awarded to fund locations for installations later this year.
Project Abstract
To reduce energy use in homes that are becoming tighter, mechanical ventilation is added to maintain Indoor Air Quality (IAQ). Smart ventilation technologies are being developed to minimize the energy impact of mechanical ventilation while simultaneously maintaining IAQ. This project will demonstrate the energy savings associated with a smart ventilation technology through a combination of field testing and simulations. The target is to get close to heat recovery ventilation (HRV) performance at much lower cost and complexity; and greater reliability through smart control of simple exhaust (or supply) fans. The project will also develop recommendations for utility programs, other energy efficiency programs and for codes/standards on how to calculate credits for smart ventilation systems.
Project Abstract
Ecotope, in partnership with Vulcan Real Estate and Seattle City Light proposes to design, pilot and verify a heat pump water heating system for large multifamily buildings using the building sewage as a heat source. The waste water heat pump (WWHP) will recover waste heat streams from the building and heat water for domestic use at extremely high performance levels. The system will be built in a large multifamily building with approximately 400 apartment units. The project team will conduct a feasibility study of the system concept and a numerical model to predict the best equipment sizing and control algorithms. With the feasibility demonstrated the team will move on to full system design in a multifamily building. The team will write a measurement plan to monitor the energy use of the system. The team will commission the system, optimize its operation and prepare a set of design guidelines to be used throughout the engineering community.