Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 226 - 250 of 289

Project Abstract
Oak Ridge National Laboratory will develop a thin insulation material that demonstrates comparable performance to existing insulation technology. ORNL estimates the energy savings potential of this insulation to be 1,319 TBtu for retrofit-only commercial roof and residential wall applications.
Project Abstract
High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.
Project Abstract
The National Renewable Energy Laboratory will work to significantly increase the capability, cost effectiveness, openness, and reach of the Residential Buildings Integration (RBI) programs tools and analysis methods to accelerate the adoption of zero energy ready homes.
Project Abstract
Unico Systems will develop a highly efficient, cost-effective residential cold climate heat pump that maintains efficiency and reliability at very low temperatures. The technology could lead to annual energy savings of 0.1 quads, equal to a reduction of 5.9 million tons of carbon dioxide emissions.
Project Abstract
Heating and cooling represents the greatest energy consumption in buildings. This agreement develops thermal building insulation material with high R-value at a cost competitive to conventional insulation materials. The expected result provides a significant increase in energy efficiency for retrofitting buildings.
Project Abstract
Lawrence Berkeley National Laboratory, in partnership with Oak Ridge National Laboratory will develop insulation that is 2 to 4 times more efficient than conventional materials and at a comparable installed cost. This insulation technology has the potential of reaching an installed cost of $2.00 per square foot for R-12/inch and targets a technical potential of 1.7 quads.
Project Abstract
This demonstration project will test the viability of replacing an RTU with Variable Capacity Heat Pump, Heat Recovery Ventilation (HRV) and a Dedicated Outside Air Source technologies. This project supports NEEA's HRV proof of concept project, by supporting a cold-climate installation at a BPA utility's building estimated to save 70% of the RTU energy use. Demonstration will inform future streamlined custom measures.
Project Abstract
Oak Ridge National Laboratory will develop a high-impact heating, ventilation, air conditioning, and refrigeration (HVAC&R) technology that can be used in many applications. This technology could lead to 0.7 - 1.1 quads of energy savings.
Project Abstract
This project will integrate pre-commercial energy efficiency measures, building automation and controls system, behind the meter solar photovoltaic and energy storage in three existing public libraries in the City of San Diego. In addition to demonstrating cost-effective pathways to achieving maximum energy efficiency in the small commercial/municipal building sector, the recipient will engage in a multiyear, flexible, and transparent collaboration aimed at uncovering, testing, verifying and publicizing strategies for integrating energy efficiency, energy storage, solar photovoltaics, and other demand side resources to achieve near zero net energy in each library and to evaluate the financial value proposition.
Project Abstract
The Association of Bay Area Governments will perform modeling analysis in nine Bay Area counties to help small and medium businesses achieve the cost effective energy efficiency improvements. The BayREN Integrated Commercial Retrofits project will modify and enhance existing open source tools to perform large-scale building energy modeling analysis on commercial buildings throughout the San Francisco Bay Area.
Project Abstract
Cree will develop a versatile, low-cost, low profile LED light-module architecture that facilitates the assembly of a variety of high-efficacy, broad-area LED luminaires. This lightweight architecture will be applicable to numerous high-efficiency, broad-area LED luminaires and will ultimately reduce the cost per lumen of LED lighting.
Project Abstract
International Center for Appropriate and Sustainable Technology will expand its one-stop-shop model to address the Small Commercial Apartment Property market with deeper retrofit. Using the model is expected to cut energy use by 20-30% in small commercial apartment properties, reduce individual building utility bills by $3,100 annually, and create 200 jobs.
Project Abstract
The Building America Space Conditioning Standing Technical Committee and Expert Meeting reports identified high relative humidity as one of three issues with the highest technical priority for ensuring comfort in low-load homes. As such, the primary objective of this project is to evaluate factors that can contribute to high relative humidity in a home (variations in internal loads, equipment sizing, and equipment setup) and quantify their relative magnitude of impact on indoor relative humidity. A technical white paper will assess the sensitivity latent and sensible gains have on comfort and recommended system sizing. This will inform R&D needs for future BA/BTO work, provide actionable information to manufacturers on the equipment needs of low-load homes (see related project, Assessing the Market and Space-Conditioning Needs of Low-Load Homes), and provide system design and sizing guidance to contractors.
Project Abstract
In this project, the Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will demonstrate and evaluate LED lighting and controls. The LRC will first evaluate a range of commercially available but currently underutilized control products and systems, from simple stand-alone controls, to fixture-integrated products, and more complex automated control systems. The LRC will review the features, operations, and protocols of each system selected and will analyze the operation of these control products with various types of drivers commonly used in commercially available LED lighting products. Once this review is complete, the LRC will down select two or more control systems to demonstrate and evaluate in different areas of an existing office building. The LRC will also select and install LED lighting fixtures to retrofit the existing fluorescent lighting in the building. Once the systems are installed and commissioned, the LRC will evaluate the operation of the control and LED lighting systems and compare their performance, operation, energy savings, and occupant acceptance to each other, as well as to the previously existing lighting system.
Project Abstract
BPA secondary research on Single-Package, Vertical Heat Pumps (SPVHP) supports the energy savings potential, and non-energy benefits, such as better indoor air quality for modular school buildings. The project will fund the installation of up to 5 SPVHPs. Project activities include pre and post metering; units would be installed over the summer to be ready for testing in the new school year. Following the analyses of the metered data, the decision will be made whether to expand the field test to other locations.
Project Abstract
This project developed a retrofit energy toolkit for SMB and demonstrated the Toolkit's capabilities on three to four building test sites. The project obtained input from stakeholders on retrofit packages, compiled utility smart-meter data and developed a load shape analysis module. The project also looked at the indoor environmental quality effects on retrofitted small office and retail buildings, and developed a comprehensive web-based retrofit tool for business owners and energy professionals.
Project Abstract
Ecology Action of Santa Cruz will develop a platform for energy efficiency program administrators that offers a comprehensive set of energy-saving measures, integrated financing tools, and expedited project measurement and verification via a contractor-driven delivery model. The platform seeks to average at least 20% energy savings per building.
Project Abstract
To reduce energy use in homes that are becoming tighter, mechanical ventilation is added to maintain Indoor Air Quality (IAQ). Smart ventilation technologies are being developed to minimize the energy impact of mechanical ventilation while simultaneously maintaining IAQ. This project will demonstrate the energy savings associated with a smart ventilation technology through a combination of field testing and simulations. The target is to get close to heat recovery ventilation (HRV) performance at much lower cost and complexity; and greater reliability through smart control of simple exhaust (or supply) fans. The project will also develop recommendations for utility programs, other energy efficiency programs and for codes/standards on how to calculate credits for smart ventilation systems.
Project Abstract
Will proven strategies from residential behavioral programs provide savings in a small commercial application? Snohomish County Public Utility District's pilot will test behavior change in the commercial sector. A solution for this sector would be highly attractive to utilities with small commercial facility end users, which represent a significant untapped energy savings resource with unique barriers to participation in behavior change programs. The pilot project is a joint venture between Snohomish County Public Utility District, PECI, Lucid, and Starbucks. The pilot will be implemented at several Puget Sound area Starbucks stores and involves providing staff with frequent energy use data and between-store competitions. If successful, the approach could be scaled to similar facilities across the region. Starbucks has over 700 stores in Washington, Oregon, Idaho, and Montana. Improvement on previous work: Very little work has been done in the small commercial arena and no pilots have been done with a large chain, such as Starbucks.
Project Abstract
The Los Angeles Cleantech Incubator will accelerate the market adoption of super-efficient building technologies by creating a replicable transparent process for taking technologies from pilot to portfolio. The project will measure, document, and publicize the results of highly energy-efficient technology pilot demonstration projects, as well as help property owners define clear metrics to scale up projects.