Skip to main content

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Showing results 276 - 289 of 289

Project Abstract

The National Renewable Energy Laboratory will develop high-performing vacuum insulation for use on installed windows. This technology could offer an alternative to replacing existing windows with highly insulting windows and save 2 - 3 quads of energy annually.

Project Abstract
This project will work directly with leading production builders and product manufacturers to demonstrate and validate high efficiency, variable capacity, ducted and ductless space conditioning systems with optimized comfort distribution and latent control for low load homes in humid climates. The team will investigate potential for better RH control via variable compressor speed, refrigerant flow, and coil air flow. The guidance and best practices from this work will result in 5-10% space conditioning energy savings in current DOE Zero Energy Ready Homes while maintaining or enhancing comfort.
Project Abstract
Steven Winter Associates will work with manufacturing partner Mitsubishi Electric to develop, test, and demonstrate an integrated energy recovery ventilation and heat pump system for residential buildings.
Project Abstract
This project will develop low-cost, low power, accurate, calibration-free, and compact airflow sensors (anemometers) for measuring: (1) room airflow in occupied commercial buildings; and (2) volumetric air flow in heating, ventilation and air conditioning (HVAC) systems. The technology will save energy by using the collected data to correct current wasteful HVAC malfunctions that result in inefficient systems and uncomfortable buildings. The anemometers will be wireless, able to be inexpensively installed in existing buildings, and operate on a battery for years and communicate wirelessly via the internet to the building's control system. The device will also sense temperature, its orientation, and its location
Project Abstract
This project will develop low-cost, low power, accurate, calibration-free, and compact airflow sensors (anemometers) for measuring: (1) room airflow in occupied commercial buildings; and (2) volumetric air flow in heating, ventilation and air conditioning (HVAC) systems. The technology will save energy by using the collected data to correct current wasteful HVAC malfunctions that result in inefficient systems and uncomfortable buildings. The anemometers will be wireless, able to be inexpensively installed in existing buildings, and operate on a battery for years and communicate wirelessly via the internet to the building's control system. The device will also sense temperature, its orientation, and its location
Project Abstract
Drexel University will develop an innovative and cost-effective automated fault detection and diagnostics tool that better identifies issues related to building energy use. This project is expected to impact a total energy market of 7,306 TBTU, with projected national energy savings of 1,096 TBTU with a simple payback time per installation of less than 1 year.
Project Abstract
This federal cost share project demonstrates the benefits of the VOLTTRON platform for DER management through the testing of the VOLTTRON Testing Tool Kit. VOLTTRON is a US Department of Energy funded open source platform intended to provide a software base for integrating management of energy demand in buildings, distributed energy resources, and the electrical grid. The tool kit expands the VOLTTRON platform beyond its original set of developers and encourages adoption by other organizations and private entities. By lowering implementation costs and adding additional features such as simulation test suites and debugging tools, the tool kit promotes wider use of the VOLTTRON platform.
Project Abstract
SLAC is working with partners Kisensum and Pacific Northwest National Laboratory to develop a VOLTTRON Testing Took kit that will enhance the VOLTTRON Open Source platform that is currently under development by adding testing tools. This makes VOLTTRON more accessible and available to small and medium facility owners by allowing for quick analysis of the potential of behind-the-meter storage, integration of renewables and responsiveness to the wholesale energy process.
Project Abstract
BPA has not provided any variable refrigerant flow (VRF) system incentives because of challenges estimating and verifying energy savings. This project will leverage BPAs AirNW Trade Ally network to identify and document VRF installations so that billing analysis can be done to determine energy savings. Activities include: billing analyses on 10 sites where the VRF system installation was the only change affecting electricity use.
Project Abstract
Ecotope, in partnership with Vulcan Real Estate and Seattle City Light proposes to design, pilot and verify a heat pump water heating system for large multifamily buildings using the building sewage as a heat source. The waste water heat pump (WWHP) will recover waste heat streams from the building and heat water for domestic use at extremely high performance levels. The system will be built in a large multifamily building with approximately 400 apartment units. The project team will conduct a feasibility study of the system concept and a numerical model to predict the best equipment sizing and control algorithms. With the feasibility demonstrated the team will move on to full system design in a multifamily building. The team will write a measurement plan to monitor the energy use of the system. The team will commission the system, optimize its operation and prepare a set of design guidelines to be used throughout the engineering community.
Project Abstract
This project leverages deep-retrofit work completed by NEEA, Northwest Energy Efficiency Alliance, and provides BPA with retrofit packages for our Maintenance Head Quarter and Heavy Mobile Equipment Shop buildings. The two retrofit packages are projected to achieve 35 and 50% energy savings through upgrades to the building envelope, lighting and HVAC systems while helping BPA meet Executive Order (EO) 13693 which calls for all new federal buildings to be net zero ready by 2030 and requires that existing buildings reduce building energy intensity by 2.5% annually through 2025 while promoting deep retrofit packages for similar buildings in the region through net zero energy building guidelines. Information from this research will be applied to new retrofit packages for other commercial buildings within the BPA service territory.
Project Abstract
This project will leverage the NEEA developed Sparktool, which is a high level decision making tool for deep energy retrofits. Research will demonstrate the tool in one building to assess its future application. This tool can be used by utilities to help their key accounts plan deep energy retrofits.