Project Description

Built in 1915, this two-story, three-bedroom home with an unfinished basement and 2,600 ft² of living space is typical of many older homes found in Eastern Washington. Building America researchers from the Pacific Northwest National Laboratory, along with local energy rater Energy Incentives Inc. assisted the home owners in cost-effectively reducing their energy use by over 50%. Researchers used Energy Gauge USA simulation software to model retrofit packages and predict the most cost-effective retrofit measures within the home owner’s budget.

The presence of asbestos insulation on the boiler made it more cost-effective to pursue efficiency measures that left the boiler in place to avoid the additional costs of disposal. Major energy and cost savings were achieved by installing a multi-headed ductless heat pump to complement the existing hydronic heating system and offset much of its fuel needs, leaving the boiler to provide supplemental heating during times of exceptional cold weather, if needed. The homeowners are also considering further improving energy efficiency and thermal comfort by insulating and air sealing the building envelope.

(Left) The original diesel boiler, encapsulated in asbestos, was left in place to eliminate removal and asbestos remediation costs, as well as provide a robust supplemental heating source in extremely cold weather. (Right) The new SEER 16, HSPF 9.4, four-head ductless heat pump system will drastically reduce fuel costs and energy consumption.
PNNL will meter and collect data on the electricity and fuel consumption of the heating systems and major appliances in this home, as well as temperature and relative humidity in several locations. This information will allow PNNL researchers to fully characterize the energy and comfort performance of the dual heating systems and monitor the impact of any addition insulation and air sealing work as it occurs.

Lessons Learned

• The key to cost-effective retrofits in this classic historic house was to avoid unnecessary replacement and upgrading costs by leaving the asbestos-encapsulated boiler intact.

• Fuel cost and availability was also a key consideration when selecting the best heating system for this home. Natural gas was not available and WA state code prevents propane systems from being installed in the basement. Switching to electric heat provided by an efficient heat pump with zonal controls was the best solution to save energy and reduce expensive diesel fuel costs.

• The scope and timeline of retrofits are often dictated by capital cost and available budget when retrofits are financed by homeowners. In this case, measures were prioritized based on energy saving potential and cost-effectiveness and implementaiton will occur over time.

"While the ductless heatpumps heat differently, it's a pleasant surprise when we pay our utility bill!"

Judy Robertus, homeowner

This chart shows the projected site energy savings resulting from the heat pump installation, as modeled in Energy Gauge.