Log in or register to create Field Kits and Sales Worksheets. Why register?

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

Lawrence Berkeley National Laboratory will provide a suite of organizational, analysis, implementation, and verification methodologies, tools, and resources to help small commercial buildings meet the 2030 District Challenge to reduce energy by 20%. This support aims to help small commercial buildings in major U.S. cities save up to 2.4 billion kBtu a year.

This project will demonstrate the potential of breakthrough electric water heating and space conditioning technologies as a pathway to zero net energy. The project will explore the complex, interdependent systems in multifamily buildings and how they work together to achieve zero net energy status for the buildings in a cost-effective manner. Four multifamily buildings, designed to be affordable, will be evaluated in various stages of design and development. These buildings will share a goal of all electric zero net energy construction with 100 percent renewable energy generation, and will utilize innovative new heat pump technologies to serve the buildings water heating and/or space conditioning needs.

Southface Energy Institute will develop energy efficiency evaluation and upgrade tools that provide at least a 50% energy improvement in new construction and a 20% energy improvement from upgrades to existing buildings, as well as develop energy audit training materials. These tools and training materials will help spur energy efficiency gains in new and existing buildings.

This project will enable production homebuilders to confidently construct market-ready homes at higher efficiency levels and empower manufacturers to design better products to meet production builder needs.

The Center for Energy and Environment and partners will field test and optimize an innovative new method for whole house air-sealing using aerosol sealant. This aerosol sealant method is already a proven duct sealing solution, and can reduce time and labor costs by simultaneously measuring, locating, and sealing leaks.

The Institute for Market Transformation will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.

Does the combination of high use alerts and e-mail messages produce higher energy savings over just the home energy reports (HERs)? We would like to understand the level of effort it takes to launch this type of project. Cowlitz PUD in conjunction with O Power is conducting research to determine the incremental energy saving impact of an Advanced Digital Feedback and Communication Campaign in addition to O Power's Home Energy Reporting Program. Cowlitz will send 25,000 Home Energy Reports (HERs) to their customers while engaging 12,500 of them through an Advanced Digital Campaign using high use alerts and e-mail messaging. The HERs program uses billing data, census data, and other information to create a neighbor-to-neighbor billing comparison to try and change human behavior resulting in kilowatt hours saved. The hypothesis is that the customer will be moved to use less energy, operate their home more efficiently or to make no-cost, low-cost, or deemed measure changes in their home if they can compare their use with like customers. The Advanced Digital Campaign is experimental. Cowlitz is one of just a few utilities testing this approach. Research results will be available in August of 2013. Improvement over previous research: Cowlitz has advanced metering infrastructure (AMI) and will be able to provide 24-hour interval data making this the first time in the Northwest that HERs has been combined with interval data.

Does the combination of the O Power's Home Energy Reports (HERs) and the Social Energy social media application create incremental energy savings impacts? This project seeks to determine the incremental energy saving impact of Social Energyan energy efficiency social media application. Social Energy enables users to compare their energy use to a self-defined group. This Social Energy Campaign is experimental. Clark is one of a few utilities testing this approach. This study will combine the Social Energy media application along with O Power's Home Energy Reporting Program. Clark will send Home Energy Reports (HERs) to 20,000 customers while engaging 10,000 of these customer through Social Energy. This application will allow Clark's customers to create their own online efficiency communities. The project has been implemented, evaluation program done during 2014 to understand the program's impact on energy savings. Improvement on previous work: Testing this application with a smaller NW utility and understanding what level of effort is involved in launching this type of program as well as determining the savings impact.

The city of Milwaukee will demonstrate retrofit approaches, including bundled energy efficiency retrofits paired with emerging finance mechanisms, in up to 200 commercial buildings across Wisconsin. These demonstrations could lead to increased adoption of energy efficiency technologies throughout the state.

The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S. Department of Energy (DOE) is continually expanding this network of residential energy efficiency programs and partners to new members.

The Institute for Market Transformation will partner with local chambers of commerce to help small business landlords and tenants improve the energy efficiency of their buildings. The Institute for Market Transformation will work with local chamber of commerce to audit 400 buildings.

Oak Ridge National Laboratory (ORNL) will work to address key issues in high performance HVAC and envelope systems by mitigating market uncertainty regarding the durability of high-performing envelope systems and validating and demonstrating advanced heating, ventilation, and air conditioning (HVAC) solutions for low-load homes. Improved technologies and systems can result in significant savings on monthly utility bills, reducing the payback period and offsetting the initial investment for the homeowner.

The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more.

The U.S. Department of Energy (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Guidelines are based on the collaborative efforts of DOE and its stakeholders to develop a framework for organizing core building science principles with key job classifications.

This research will examine several high aspect ratio (15:1) cylinders, (smooth, roughened and grooved) in a wind tunnel test that specifically measures dynamic response to simulated boundary layer flow. Both along- and cross-wind response will be measured for a range of wind speeds to determine the nature of the loading and in particular the effect of the grooves on the loading and axial wind speeds. This will provide the necessary data to develop a full proposal to study the bio-mimicry aspects of this work to the aerodynamics of tall buildings.

The Institute for Market Transformation (IMT) will conduct energy code field studies in Florida, Nebraska, Iowa, and Nevada to measure the impact of energy codes on commercial building energy efficiency, and identify opportunities for savings through increased compliance.

The purpose of this agreement is to fund the full-scale deployment demonstration of the Vortex Process Technology in cooling towers of commercial buildings. This technology has been used successfully in Europe and will be testing in California to address state specific goals for water and energy savings

This project will develop and demonstrate an approach to scale residential retrofits for disadvantaged communities that will focus on customer-centric solutions. This project will develop and demonstrate an innovative approach, focusing on energy efficient retrofit packages that are non-intrusive to occupants and have the potential of reducing energy use by 30 to 40 percent.

This project will demonstrate how a large number of small electric loads, each impacted by and tuned to individual customer preferences can provide load management for both utilities and the California Independent System Operator (California ISO). The recipient will work with an extensive spectrum of leading product providers covering all major distributed energy resources (DERs), such as Nest (thermostats), ThinkEco (plug loads), Honda, BMW (auto), EGuana (smart Inverter) and Ice Energy (Thermal Storage). A variety of price signals will be tested for Time-of-Use customers such as Critical Peak Pricing and Demand Rate. The project will use deep analytics to evaluate individual customer preferences for demand management using microdata from devices and aggregate the responses to meet grid needs at different distribution and transmission levels.

The project goal is to demonstrate the substantial demand response (DR) and energy savings are achievable in supermarket refrigeration systems and that the integrity and safety of refrigerated products will be maintained to minimize risks to supermarket owners and customers. The project plans to analyze supermarket refrigeration energy loads in the Pacific Northwest for both demand response and energy efficiency. The purpose is to identify the most promising control strategies and technologies that can yield energy savings and demand response as part of an integrated management approach.

Demonstrate Strategic Energy Management Analytics (Build Plus) in 2 buildings for 1 year. This research builds on a tool created with funding through BPAs Technology Innovation Research and Development Program. Work has continued to refine the tool and research needs to be conducted to verify savings. The tools will be installed at the facilities for up to 1 year starting in 2016 and analyses will follow in late 2017.

SWA will work with NYCHA to identify a subset of building typologies that represent its broader portfolio and are also relevant to other NY housing stocks. SWA will assess the representative properties and identify pathways for achieving DERs. SWA will review existing physical needs assessments plans (PNA) and meet with the NYCHA capital planning team to understand the existing long term capital needs and approach to capital planning. SWA will develop potential long term plans for each building typology to realize deep energy reductions that build on existing capital plans and needs.

This project will research DC and AC-DC hybrid systems in buildings and develop resource information, end-use templates, and building guidelines that could improve the ability to achieve zero net energy buildings. The feasibility, costs, benefits, market barriers, and customer and education needs will be assessed, including guidelines for residential and small commercial buildings.

This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.

This project will contain three elements to provide data for policymakers and businesses to explore this new market. First, this project will determine prosumer (proactive consumer) interest in a third-party demand response market by testing user acquisition via direct and non-direct engagement strategies. Second, experimentation with behavioral and automated users will allow analysis of user yield under a variety of conditions and extract a set of shadow curves that can inform how much energy load shifting can be expected under various price incentives. Finally, this project will create a novel solution for using residential telemetry to connect prosumers and their Internet of Things (IoT) devices to the market operators.

The Gas Technology Institute will develop a systems approach for managing air sealing, ventilation, and air distribution to improve a retrofitted home's energy use while maintaining indoor air quality. Ventilation energy savings of up to 30% are possible.

Provide enhanced residential efficiency analysis tools tailored for the Pacific Northwest.
1. A residential building energy analysis tool based on BEopt/EnergyPlus, used to identify cost-optimal efficiency packages
2. A regional residential efficiency analysis tool driven by BEopt/EnergyPlus simulations/optimizations and calibrated to Residential Building Stock Assessment (RBSA) data, used to assess residential building energy conservation potential
The project has been completed and additional Technology Transfer activities are being explored to promote the use of these tools throughout the Pacific NW.

Envision Charlotte will expand its energy management approaches to more than triple the number of participating buildings. By adding additional participants, Envision Charlotte will continue to foster innovation in conserving energy and reducing operating costs.

FXFOWLE Architects will undertake a research study to determine the viability of implementing the Passivhaus standard on tall residential buildings in New York State. Using a 25 story multifamily project currently in design as a base building, the study will investigate the detailed implications of adapting a typical tall residential building to meet the Passivhaus standard. This work will analyze the impacts from architectural, structural, enclosure detailing, materials, mechanical, zoning, financial, marketability, and constructability perspectives. Market barriers and opportunities will be identified and addressed. In addition, the study will evaluate how applying the Passivhaus standard to a tall multifamily residential building can affect resiliency and security issues

CNSE and EYP Architecture and Engineering will evaluate the energy and demand benefits from smart controls that integrate various systems to enable more holistic operation of a building. The systems to be controlled include digital addressable LED lighting system with day-lighting controls, automated window covering system, occupancy RFID tracking system, submetered energy monitoring and utility meter data, PLC-based HVAC controls, fuel cell, PV array and task lighting.

Taitem Engineering will evaluate the Dutch program for deep energy retrofits of residential buildings known as Energiesprong. The objectives of this study are as follows: gain an in-depth understanding of the solutions implemented under the Energiesprong program, confirm the cost and performance of the implemented retrofits; assess transferability to NYS building stock (e.g. wood-frame vs. concrete frame) and assess transferability to NYS different climate zones.

The New Buildings Institute will work in a variety cities around the country to systematically identify how energy codes and other policy measures influence energy consumption patterns in municipal buildings. The New Buildings Institute will develop a methodology to measure the impact of codes on municipal building portfolios, and provide local governments with tools to identify which buildings are ripe for energy efficiency-related investments.

The Retail Industry Leaders Association will improve energy savings in the retail sector by helping energy managers secure financing for efficiency projects—a key barrier to energy efficiency investment in this sector. This project will result in at least five new replicable energy financial management strategies.

Southeast Energy Efficiency Alliance will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.

The Appraisal Foundation (TAF) and the Building Technologies Office (BTO) will work together to enable practicing real estate appraisers to better characterize the value of energy efficient and other green attributes of buildings. TAF will produce documentation that provides voluntary guidance on recognized valuation methods and techniques for valuation professionals.

The Health & Home Performance Initiative was established to support DOE's efforts to leverage the healthcare sector as a partner to help increase leads to contractors and ultimately fund portions of appropriate health-focused home performance improvements. In FY17, a literature review demonstrating associations between improved health and home performance services was published. Also in FY17, DOE is developing a roadmap detailing what is needed and what is currently available to facilitate healthcare integration with EE.

Evidence in a new, groundbreaking Energy Department report, Home Rx: The Health Benefits of Home Performance, shows that home performance upgrades can improve the quality of a homes indoor environment by reducing the prevalence of harmful indoor air pollutants and contaminants. This paper is just one part of the Energy Departments broader Health and Home Performance Initiative. Another step will be to develop messaging that home performance programs, contractors, and partners can use to communicate clearly about the health benefits of home performance work with consumers and stakeholders.

The next step for the Initiative will be to engage with stakeholders to develop a roadmap to facilitate the home performance industrys incorporation of healthcare into their work. Workshops are slated for conferences in January, March, and May 2017.

The Healthy Homes Accelerator aims to better integrate healthy housing principles and practices in energy retrofits and new home construction; and support the creation of local partnerships between key stakeholders that are aimed at overcoming barriers to incorporating enhanced health measures in buildings.

The Home Energy Information Accelerator will demonstrate innovative policies and approaches to spur investment in energy efficiency across our homes, buildings, and industrial facilities.

Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.

Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.

Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.

Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.

Like a miles-per-gallon rating for a car, the Home Energy Score is an easy-to-produce rating designed to help homeowners and homebuyers gain useful information about a home's energy performance. Based on an in-home assessment that can be completed in less than an hour, the Home Energy Score not only lets a homeowner understand how efficient the home is and how it compares to others, but also provides recommendations on how to cost-effectively improve the home's energy efficiency.

The Home Upgrade Program Accelerator is
designed to help home energy upgrade programs
bring services to more homes across the country
by leveraging data management strategies that
minimize costs while improving overall program
effectiveness. These programs are currently
completing hundreds of thousands of home
upgrades annually with average savings of 20%
for participating households.

The Home Upgrade Program Accelerator is
designed to help home energy upgrade programs
bring services to more homes across the country
by leveraging data management strategies that
minimize costs while improving overall program
effectiveness. These programs are currently
completing hundreds of thousands of home
upgrades annually with average savings of 20%
for participating households.

This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response

This project will test the effectiveness of innovative designs for demand response programs for residential customers using a behind-the-meter customer engagement platform developed by Chai Energy. Each of these innovative demand response strategies integrates a recent approach that energy researchers have shown to be effective in reducing customer consumption. These strategies include providing households with a) tailored energy-analytic feedback, b) aggregated versus single-period incentive information, c) non-financial environmental health benefit frames and d) social comparisons. An additional strategy will explore how the timing of the delivered demand response information affects the magnitude of household participation and response

Pages