Log in or register to create Field Kits and Sales Worksheets. Why register?

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

This proposal responds to BPA TIFO Interest Area 7, Cold Climate Heat Pump Water Heaters (HPWH). We propose to develop and demonstrate a novel integrated HPWH customized for demand response (DR) and efficient operation in cold climate homes.

This work will determine the savings and the cost-effectiveness of advanced rooftop unit controller (ARC) Light Retrofits. This work will support a new evaluated measure through the development of a Standard Protocol, based on 38 Zeros meters and the ARC retrofit fan-only analysis. Utility grants will fully fund the installation of up to 30 ARC Light Retrofits, where 38 Zeros meter installations are also fully funded, with one-year of data hosting. (ARC Light Retrofits are expected to cost around $2,000, while the 38 Zeros meter installations are expected to cost around $1,500, including one year of data-hosting and retrieval of the 38 Zeros meter.) All grants will be paid by 9/15/15 because of the inability to spend money in the new rate period. Based on EER feedback, utilities will claim self-funded (non-EEI) savings as FY15 custom projects.

The goal is to develop a standard protocol to verify site-based savings for advanced rooftop unit (RTU) control (ARC) retrofits, based on manufacturer variable frequency drive (VFD) data. This will streamline the acquisition of 1 aMW of ARC retrofits and lower the cost of the impact evaluation. This project will draft a standard protocol to verify ARC retrofit site-based savings using Catalyst controller data. The project will compare best practice (unit-level, true-power over one-year with daily baseline cycling, as reported in Pacific Northwest National Laboratory (PNNL) study) and four simplified savings methods, to determine a simplest-reliable method. Deliverables include a draft protocol and presentations to the RTUG and, if appropriate, to the RTF. Once approved, the standard protocol would allow the streamlined acquisition of ARC retrofits because baseline metering and long-term baseline cycling would not be required. Once 1 aMW of ARC retrofits (approximately 1,000 RTUs) are reported, several years of Catalyst controller data would be available for most of the units for the impact evaluation. Using the standard protocol and manufacturer data, no post-post cycling or additional instrumentation, such as Wattnodes for unit-level true-power, will be required.

Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.

Does the combination of high use alerts and e-mail messages produce higher energy savings over just the home energy reports (HERs)? We would like to understand the level of effort it takes to launch this type of project. Cowlitz PUD in conjunction with O Power is conducting research to determine the incremental energy saving impact of an Advanced Digital Feedback and Communication Campaign in addition to O Power's Home Energy Reporting Program. Cowlitz will send 25,000 Home Energy Reports (HERs) to their customers while engaging 12,500 of them through an Advanced Digital Campaign using high use alerts and e-mail messaging. The HERs program uses billing data, census data, and other information to create a neighbor-to-neighbor billing comparison to try and change human behavior resulting in kilowatt hours saved. The hypothesis is that the customer will be moved to use less energy, operate their home more efficiently or to make no-cost, low-cost, or deemed measure changes in their home if they can compare their use with like customers. The Advanced Digital Campaign is experimental. Cowlitz is one of just a few utilities testing this approach. Research results will be available in August of 2013. Improvement over previous research: Cowlitz has advanced metering infrastructure (AMI) and will be able to provide 24-hour interval data making this the first time in the Northwest that HERs has been combined with interval data.

Does the combination of the O Power's Home Energy Reports (HERs) and the Social Energy social media application create incremental energy savings impacts? This project seeks to determine the incremental energy saving impact of Social Energyan energy efficiency social media application. Social Energy enables users to compare their energy use to a self-defined group. This Social Energy Campaign is experimental. Clark is one of a few utilities testing this approach. This study will combine the Social Energy media application along with O Power's Home Energy Reporting Program. Clark will send Home Energy Reports (HERs) to 20,000 customers while engaging 10,000 of these customer through Social Energy. This application will allow Clark's customers to create their own online efficiency communities. The project has been implemented, evaluation program done during 2014 to understand the program's impact on energy savings. Improvement on previous work: Testing this application with a smaller NW utility and understanding what level of effort is involved in launching this type of program as well as determining the savings impact.

During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.

BPA completed four installations of the rooftop unit (RTU) Catalyst unit, a packaged controls technology providing variable frequency drive (VFD) and demand control ventilation (DCV). These controllers were retrofits for packaged HVAC systems on four BPA buildings. Installations were completed during 2014.

Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.

The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.

The project goal is to demonstrate the substantial demand response (DR) and energy savings are achievable in supermarket refrigeration systems and that the integrity and safety of refrigerated products will be maintained to minimize risks to supermarket owners and customers. The project plans to analyze supermarket refrigeration energy loads in the Pacific Northwest for both demand response and energy efficiency. The purpose is to identify the most promising control strategies and technologies that can yield energy savings and demand response as part of an integrated management approach.

This project is a controlled field study and lab test that assessed the demand response (DR) potential of split system and unitary heat pump water heaters (HPWHs) that use carbon dioxide (CO2) refrigerant. The researchers included Washington State University (WSU), Pacific Northwest National Laboratory (PNNL), Efficiency Solutions, and Ecotope working with Cascade Engineering Services.

This project seeks to conduct the technical analyses, demonstration, market evaluation, and regulatory engagement necessary to realize cost-effective high-accuracy measurement and verification (M&V) for northwest efficiency programs. The focus of the effort is whole-building M&V for commercial buildings.

Optimize heat pump water heater (HPWH) next generation project for both EE and DR. The major objectives of the project are:
1. Demonstrate and quantify the energy performance of the prototype GE Brillion GeoSpring Hybrid Water Heater with and without exhaust air ducting over heating and cooling conditions in the lab homes
2. Evaluate or quantify the potential for the GE smart grid-enabled HPWH to provide demand response (to both increase/absorb [INC] and decrease/shed/shift [DEC] load) under various price signals sent to the unit.

In addition, the proposed project will provide GE information to determine and design the optimal ducting configurations for their unit should they decide to offer this feature as an option for this new-to-the-market unit.

The proposed project will demonstrate Transformative Wave Technology eIQ building management system (BMS) year-round capability for meeting BPA demand response criteria for roof top units, lighting, miscellaneous electric loads, and electric hot water heaters. The demand response that will be met will be for day-ahead response, under 10-minute response and permanent load reduction. The goal is to evaluate the cost-effectiveness, feasibility and scalability of the eIA BMS for both energy efficiency and demand response.

The Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will work with the Lighting Design Lab at Seattle City Light (SCL), a leading manufacturer of LED outdoor lighting and a leading controls manufacturer to demonstrate a sensor-controlled, adaptable LED lighting system in the parking lots for municipal, retail, or similar parking lot.

Working with project partners from the Seattle Lighting Design Laboratory, the Lighting Research Center (LRC) will identify a suitable outdoor lighting installation in a parking lot and conduct evaluations of energy and power use, visual responses of people in and approaching the outdoor location, and subjective ratings of safety and personal security while viewing and occupying the location. The design of the lighting installation will utilize published research on the spectral sensitivity of the human visual system for scene brightness perception and on the relationships between scene brightness and perception of safety and security previously published by the LRC project team. The proposed project will consist of a full-scale outdoor lighting demonstration at a parking lot facility within BPA service territory. The demonstration will be based on a proposed specification method for maximizing perceptions of safety and security of occupants, taking advantage of the differential spectral (color) sensitivity of the human visual system for brightness perception at nighttime light levels. Sensations of brightness are in turn strongly related to perceptions of personal safety and security in outdoor locations. It is anticipated that using white light sources such as a lighting emitting diode (LED) illumination in place of conventional high pressure sodium (HPS) illumination energy savings of 40-50% will be possible while maintaining perceptions of brightness, safety, and security.

Demonstrate Strategic Energy Management Analytics (Build Plus) in 2 buildings for 1 year. This research builds on a tool created with funding through BPAs Technology Innovation Research and Development Program. Work has continued to refine the tool and research needs to be conducted to verify savings. The tools will be installed at the facilities for up to 1 year starting in 2016 and analyses will follow in late 2017.

An advanced thermal post-packaging food preservation technology for controlling pathogens called "Microwave Assisted Thermal Sterilization" (MATS) has been developed by a team led by Washington State University (WSU) (http://www.microwaveheating.wsu.edu/). MATS technology has the potential for replacing conventional thermal retort ("canning") food preservation methodologies due to its greatly reduced processing time. Typical MATS processes cut conventional canning processing time by 80%, with increased energy efficiency and superior finished product characteristics like improved nutrient retention and substantially increased food quality.

In this project, the Lighting Research Center (LRC) of Rensselaer Polytechnic Institute will expand on preliminary studies it has already completed into LED reliability to develop a cost-effective, accelerated test method for LED Lighting products that will allow accurate projection of system life for any given environmental temperature and use pattern.

Multifamily (MF) is hugely underserved in Residential energy efficiency (EE) Programs and part of our MF ductless heat pump (DHP) strategy is to look at different MF use cases and identify which MF use cases provide a higher EE potential. So far DHP results in MF are mixed and this project will assess the energy use and savings of ductless heat pumps in mid-rise MF buildings. This study offers a unique opportunity for a side by side comparison of heat pumps and electric resistance heat within a single apartment building with 278 apartments. The project would collect billing data on all the individual units, conduct an analysis to disaggregate heating, cooling, and baseload energy use, and compare the two types of heating systems.

Seven alternative ductless heat pump (DHP) solutions were identified during the 2014 Washington State University (WSU) Assessment Study, including multiple internal heads, ducting between rooms, etc. Two solutions were recommended for further research. Technology and research plans need to be developed for these alternatives. Research plans will need to be developed for this project.

The project is designed to test the ductless heat pump (DHP) in different applications. Fifty-one sites were installed to test different applications including single family, multifamily, manufactured homes , and small commercial across different climate zones. As part of the study, one year of data was collected through sub metering; and pre- and post-billing data were completed and analyzed for each site. Preliminary results have been promising for manufactured homes and single family homes with forced air furnace applications. The study was completed during the spring of 2013. Based on the findings of the study, Single Family and Manufactured Home applications provided sufficient energy savings to warrant presentation to the Regional Technical Forum as new measures in 2015. Both were given a provisional UES (deemed) measure status. DHPs in Manufactured Homes with zonal heat were given a Small Saver measure status.

The 7th Power Plan has targeted 261aMWs of savings for embedded data centers and BPA would like to develop a series of new measures to acquire these savings. Embedded Data Centers are defined as server rooms located on-site in commercial buildings which are larger than server closets but smaller than enterprise data centers. This project will inform and streamline custom projects for future Data Center Air Flow Management retrofits which may include multiple data center HVAC retrofits, including blanking panels, raising space temperatures, containment and air flow management. Up to two grants will be awarded to participate in this field study to test Data Center Air Flow Management retrofits and other HVAC solutions for Embedded Data Centers. This field study will also demonstrate and verify a Data Center Air Flow Management (AFM) energy savings calculator developed by Seattle City Light in the Data Center Track and Tune Project.

The Pacific Northwest National Laboratory (PNNL) and the Northwest Food Processors Association (NWFPA) propose to carefully evaluate opportunities for energy, emission, and cost savings and non-wires solutions, including alleviation of transmission bottlenecks and fast-ramping supply capabilities with greater use and better design of combined heat and electric power (CHP) distributed generators (DGs); combined cooling, heating, and electric power (CCHP) DG; and energy storage installed on-site at energy-intensive food processing facilities.

Provide enhanced residential efficiency analysis tools tailored for the Pacific Northwest.
1. A residential building energy analysis tool based on BEopt/EnergyPlus, used to identify cost-optimal efficiency packages
2. A regional residential efficiency analysis tool driven by BEopt/EnergyPlus simulations/optimizations and calibrated to Residential Building Stock Assessment (RBSA) data, used to assess residential building energy conservation potential
The project has been completed and additional Technology Transfer activities are being explored to promote the use of these tools throughout the Pacific NW.

Optimize heat pump water heater (HPWH) next generation project for both energy efficiency (EE) and demand response (DR). In recent years, heat pump water heaters have reemerged as a potentially high impact energy efficient technology. Hybrid heat pump water heaters have been shown by the Electric Power Research Institute (EPRI) to provide high efficiency electric water heating. The EPRI Energy Efficiency Demonstration has shown energy savings of 20-40% over conventional water heaters in preliminary analysis. The project will address: the feasibility of variable speed compressors to eliminate electric resistance backup; alternative refrigerants and system configurations; demand response and ancillary service opportunities and strategies, and whole building impacts of heat pump water heater systems.

This project will apply the framework created in the prior research to develop early deployment plans for three additional technologies and to guide early deployments with multiple utilities for five technologies, two of which were planned in prior research. The three technologies being deployed are heat pump water heaters, led menu boards, and engine generator block heaters.

This project is intended to inform both utilities and the public of the potential energy saving benefits of smart thermostats. For utilities, it may provide a measure of how these thermostats fit into their programs and how customers use them to enable energy or demand savings. Utilities will get an opportunity to gauge cost-effectiveness of energy efficiency programs for smart thermostats. Demand response from residential air-conditioners has been a target of many utility programs, but the cost of installation of load control devices and the resulting perceived compromise in customer comfort have been large barriers.

The project will evaluate alternative defrost methods for use in residential and light commercial Air Source Heat Pumps (ASHPs) in order to reduce the negative effects conventional defrost methods create and improve energy efficiency and overall system performance. The use of a hot gas bypass method, similar to that employed in commercial refrigeration systems, will be investigated, as well as frost-preventing coil coatings. Heat pump prototypes will be constructed in order to enable future design and optimization of heat pump products and their associated control strategies.

The goal of this research project is to determine if it is possible to pre-heat water for swimming pools to save energy. The study is designed to show the efficacy of this application as well as the associated energy savings. In 2016, BPA engineering collected baseline operation data on the existing electric resistance water heater for a residential swimming pool. Early in 2017, the CO2HPWH was installed and monitored. The initial results showed that the system was under performing and a number of modifications are being considered. The current plan is to implement the modifications and monitor the new design through December 2017 to allow for warm and cold weather operation. A final paper will be prepared by February 2018. While this study is focused on the residential sector, the nature and results of this study are also applicable to water heating EE projects in the commercial sector. BPA will generate a summary brief which will inform the region of the results. Its important to build the body of knowledge for CO2 heat pumps and demonstrate the efficacy of a new use case.

This supplemental project has been designed to provide utilities a means of working together in a coordinated fashion to test this concept in field environments. The goals of this supplemental project are:
1. To prove the performance of universal Consumer Electronics Association (CEA) 2045 communications port (comm port)
2. Convince manufacturers that the installation of a simple comm port is very low-cost, and makes their equipment easy to incorporate into any utility demand response (DR) program nationwide so that it could eventually become standard practice on all water heaters. If that can be achieved, then the question of whether or not a customer participates in a utility DR program becomes a simpler customer choice.

Heating water for commercial is identified in the 7th Power Plan as desired measures. The goal of this project is to fund the design, installation, commissioning and warranty of a large commercial heat pump water heater (HPWHs) as an Emerging Technology Field Test. BPA will award fund utility grants to design, install and commissioning the unit, meter energy usage and provide data to BPA for further analyses. Each utility will also provide results regarding the design, installation, and commissioning of the unit which will be shared publically

Commercial HVAC Efficient Pumping Technology has been identified by BPA as having significant electrical energy savings potential. Grants will be awarded to BPA customer utilities to test CHEP installation for Commercial, Agricultural and Industrial applications. Pump retrofits include integrated, variable-speed HVAC system pumps ranging in size between 1/3 and 10 horse power with controls. To date, three utilities have requested financial assistance for installations. The units will be installed in 2017 and utilities will provide reports within one year to report on system performance and present information on potential market barriers.

The goal of this grant is to share the cost for the design, installation, and commissioning to replace Roof Top Units (RTU) with Heat Recovery Ventilation (HRV) and Variable Capacity Heat Pump (VCHP) systems. In 2016, Northwest Energy Efficiency Alliance (NEEA) identified this potential RTU replacement strategy to help meet the regions energy efficiency targets and conducted a proof of concept study for this new replacement system. NEEAs preliminary analysis estimates that an HRV and VC HP system could be combined to save over seventy percent of the energy used by RTUs. BPA is interested in obtaining field data for additional systems in the Pacific Northwest. The expected results from this project include the following: HRV and VC HP system cost effectiveness information; System performance data; Verification that whole-building billing analysis is an adequate methodology to measure savings, and Identification of best practices for installation and commissioning based on feedback from the owner, utility, designer, contractor and occupants.

The goal of the project is to collect both historical and current water use data as it relates to the installation and operation of Smart Irrigation Controllers for residential and commercial landscaping applications in BPA service territory. BPA will work with customer utilities to install Smart Irrigation Controllers in residential and commercial landscaping applications to determine the water and electrical energy savings of each installation. The performance period of the study will include the entire 2016 irrigation watering season and a final report will be due in December 2017.

The project includes feasibility and design studies followed by demonstration of a large central reverse cycle chiller (RCC) or heat pump water heaters for energy efficient production of domestic hot water in multifamily residential projects. Feasibility and design studies were completed in 2010. The first installation was completed in November 2012; a second installation was completed in the Spring 2013. The next phase of the project will include measurement and verification of energy savings. The project will conclude with a final report of lessons learned and recommendations for future applications of this technology. This project will look to answer the following research question: quantify the energy savings using a large heat pump water heater (or called RCC) vs. electric resistance domestic hot water in a multifamily (MF) application to prove the concept, and understand technical challenges and whether this is a good technology for multifamily sector.

In the 7th Power Plan in the Pacific NW region, Advanced Power Strips have been identified as having significant savings potential. BPA would like to test this technology in commercial settings to determine energy savings; to understand unit performance; identify best practices for installation and gather feedback from end users. BPA will work with utilities to identify potential sites.

This is a continuation of the previous and current work with the Sanden split system HPWH which was funded through TI. To date, 4 installations have been completed in the NW region. Following the successful completion of a Market and Technical Assessment, BPA will seek additional installations to document energy savings; demonstrate the viability of the product in the NW; and produce user and installation manuals to facilitate the market update of this technology.

Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps (DHPs) with back up resistance heating. If the lab test shows that Ducted mini splits provide more sufficient savings then a field test will be implemented.

BPA funded a small field test through NEEA to understand if DHPs could be installed by owners to reduce installation costs to improve cost effectiveness. NEEA received funding to track the 4 installations. There were key learnings from each installation which were documented to share with the region. Preliminary results were reported earlier this year to members of the BPA and NEEA by Ecotope who managed the installations.

Starting in 2016, the project team met to define research objectives to take an Unit Energy Savings - Deemed research proposal to the RTF in early 2018. The team is working to collect data from 100 LESA conversions to determine energy savings. To date the team has collected information from approximately 40 sites in Idaho through a collaboration with Rocky Mountain Power. The team expects over data from over 100 sites to be collected during the summer of 2017. The project team is monitoring soil moisture content on 15 - 20 sites in Oregon and Washington to provide additional information to the RTF.

In 2013, BPA received an unsolicited proposal for a case study for a side-by-side comparison of a geothermal heat pump and variable refrigerant flow (VRF) system in nearly identical multifamily housing units in Tacoma, Washington. The project provided a unique opportunity to evaluate these two technologies while providing an application for multifamily housing. The project will determine how the seasonal performance of the two systems for space conditioning and production of hot water compares. The following information will be provided for the operation of both units: quantified savings and costs over a specific baseline; understanding of the engineering design, installation, ownership, and possible utility barriers; quantified annual energy savings, benefits, and costs; documented magnitude and longevity of the incremental electric energy savings; documented operation and energy use; and described energy savings time of occurrence and duration, load shape, and lifetime.

The objective of this research is to design, build and test a residential / light commercial heat pump high density thermal storage (HPT) system. Various high density thermal storage materials, including Zeolite and metal organic framework (MOF) materials, will be evaluated for system size and costs. The research will build a proof-of-concept heat pump high density thermal storage (HPT) prototype to test and demonstrate the feasibility and potential of the proposed technology. This prototype will quantify the potential energy and demand savings benefits of the identified combination of the HPT and determine the controls and other requirements to enable successful load shifting and demand response capability for the developed HPT solution

In this project, National Renewable Energy Laboratory (NREL) will partner with Robert Bosch, LLC and Colorado State University to develop and demonstrate a novel technology package which can overcome numerous adoption barriers and achieve energy savings as well as providing flexible demand-side management including demand response. The full scope of this project is to develop and demonstrate an innovative Home Battery System which provides electric energy storage and conversion, along with self-learning adaptive control signal outputs for appliances and reliable predictions for residential demand response. The team will develop and perform preliminary validation of customer identification program (CIP) requirements on the Home Battery System. The work will results in improved understanding of the system performance and cost tradeoffs. The project will make substantial progress toward a marketable product but may not result in a market-ready Home Battery System product.

Pacific Northwest National Laboratory (PNNL) has just completed extensive research to determine energy efficiency savings for storm windows. The goal of this project is to obtain residential and possible commercial Unit Energy Savings (UES) measure approval from the Regional Technical Forum (RTF) for interior and exterior low-e storm windows. This work will create the (Simplified Energy Enthalpy Model) SEEM workbook and ProCost model to inform regional savings and cost-effectiveness assumptions, presentation of these data to the RTF in collaboration with RTF staff, and associated documentation.

Ducted mini-splits are currently available for single family applications. Research is required to determine if these units will be more efficient than the traditional ductless heat pumps DHPs with back up resistance heating. This research project will utilize the Pacific Northwest National Laboratory (PNNL) Lab Homes to test how the performance of a multi-zone ducted mini split application compares to the traditional single zone DHP with back up resistance heat in a single family application. The PNNL Lab homes provide the opportunity to conduct a side by side experiment with identical homes. Results of this research will determine if BPA should pursue additional field tests.

Create a buying guide for someone who wants to purchase an easily commissioned lighting control system. What are some of the main products available, and how do they compare to each other? The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layoutsoffice and high bay. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions.

The Lighting Research Center (LRC) will conduct pilot testing and analysis of three selected control systems to independently verify system commissioning, operation, and compatibility with two different integral LED luminaire layouts. The LRC will also quantify system operational characteristics, commissioning, and energy savings under field conditions. To begin the project, the LRC will specify a lighting control system capable of operating four integral LED suspended luminaires. The controls manufacturers selected will be CREE, Wattstopper, and Lutron. The LRC will also order eight integral LED luminaires (four luminaires from CREE Lighting with 0-10V drivers and step-dimming drivers that are used with the fixture integrated lighting sensors and four from Lithonia Lighting with 0-10V drivers). Six luminaire control system combinations will be evaluated in this project.

Installed LED Lighting fixtures and lamps at a number of different types of BPA facilities