Log in or register to create Field Kits and Sales Worksheets. Why register?

Research Tracker

This tool is intended for researchers and program managers to quickly find research projects around the country that are relevant to their work. The four organizations who provided content for this purpose represent the largest energy efficient buildings research portfolios in the country. These organizations each provided the content that they were comfortable sharing publically. Therefore, upon clicking on a particular project, it is possible that certain pieces of content are not present. Where possible, a point of contact is provided so that specific questions can be directed to that person. We welcome your comments! If you would like to provide any feedback on this tool (positive or constructive) please email basc@pnnl.gov.

IBACOS will investigate a simplified residential air delivery system to resolve comfort issues reported in low-load, production-built homes. This project could result in state-of-the-art comfort distribution systems, as well as a thermal comfort metric that helps builders and HVAC contractors measure and communicate the value of improved comfort delivery systems.

The University of Florida will develop a technology for compact, low-cost combined water heating, dehumidification, and space cooling. This technology has the potential to save 480 TBtu/year in water heating and an additional 135 TBtu/year by reducing the air conditioning load.

Home Innovation Research Labs, Inc. will work to make the extended plate and beam system of incorporating insulation more accessible to builders through demonstration projects, technical documents, and code compliance assistance. Findings from these activities could play a critical role in improving the efficiency of home heating and cooling, which typically account for 40% of a home's energy consumption.

The Industrial Science & Technology Network, Inc. will develop an environmentally clean, cost-effective building insulation with superior performance. Commercialization of this technology would reduce U.S. energy consumption related to building envelope components by 7%, equal to $8 billion in annual economic savings.

Lawrence Berkeley National Laboratory will identify an alternative method to estimate two difficult-to-measure inputs used in building energy modeling. The end product will simplify and help automate the process of creating a calibrated model for existing buildings.

Argonne National Laboratory will develop an acoustic method of measuring the infiltration of a building envelope. The method will enable infiltration measurement of all buildings, which could lead to decreased building energy use.

Oak Ridge National Lab (ORNL), with its partner 3M, is developing adhesive chemistries for bonding aluminum and copper during heat exchanger manufacture, resulting in enhanced bonding and significant energy savings.

The purpose of this research is to develop and demonstrate an integrated humidity and ventilation control solution to improve indoor air quality, comfort, and energy performance for low-load homes in hot-humid and mixed-humid climates.

This project deploys APMD technology over a large sample size, at approximately 55,000 computer workstations at several Community Colleges, and focuses on integrating the technology with facility operations to ensure that they meet the needs of the sites and staff. Key features of the proposed project include outreach and individual education programs to California Community College Districts, evaluation of sites for participation in the project, purchase and installation of APMDs at approved sites, measurement and verification (M&V) activities both pre- and post-APMD implementation at the selected demonstration sites, and stakeholder satisfaction information from demonstration facilities staff and APMD end-users through interviews and surveys.

Optimized Thermal Systems, with their partners Heat Transfer Technologies, LLC, and interest from United Technologies Research Center, will develop a manufacturing procedure for a serpentine heat exchanger for heating, ventilation, and air-conditioning systems that has 90% fewer joints than current heat exchangers.

This project will enable production homebuilders to confidently construct market-ready homes at higher efficiency levels and empower manufacturers to design better products to meet production builder needs.

The Center for Energy and Environment and partners will field test and optimize an innovative new method for whole house air-sealing using aerosol sealant. This aerosol sealant method is already a proven duct sealing solution, and can reduce time and labor costs by simultaneously measuring, locating, and sealing leaks.

The University of Minnesota will field test an innovative insulated solid-panel building envelope system that (1) eliminates thermal bridging, improves durability, and reduces construction costs compared to conventional, wood-framed construction; and (2) is appropriate for the affordable housing market.

Pacific Northwest National Laboratory (PNNL) in partnership with a US based global manufacturing services provider will design, construct, and demonstrate an affordable heat pump clothes dryer (HPCD) suitable for the US market. A novel hybrid HPCD will be developed and demonstrated to save at least 50% of the energy used by conventional electric dryers, and will have a payback of less than five years for at least 25% of BPA residential customers.

The University of Minnesota: Twin Cities will field test an innovative insulated solid-panel building envelope system that (1) eliminates thermal bridging, improves durability, and reduces construction costs compared to conventional, wood-framed construction; and (2) is appropriate for the affordable housing market.

The Institute for Market Transformation will investigate whether investing in statewide building energy code education, training, and outreach programs can produce a significant change in residential building code compliance rates. The results of these activities provide the necessary business case to influence non-government entities, particularly utilities, to make investments in similar programs, which could lead to substantial national energy savings.

Clemson University, with their partners Harvard University, Phase IV Engineering Corp., and Iowa Energy Center, will develop, demonstrate and pre-commercialize low-cost, digital plug-and-play, passive radio frequency identification sensors for measuring indoor and outdoor temperature and humidity, which will improve building operations and cut energy costs.

High performance, low-load homes face unique space conditioning challenges that are not adequately addressed by HVAC design practices and equipment offerings. Equipment manufacturers have yet to include a diverse set of low-capacity equipment in their product offerings due to a lack of understanding of (1) where the low-load home market is headed and (2) the load profiles typical to low-load homes. This project looks to address both of these information gaps and ultimately send the necessary low-capacity equipment market signals to manufacturers, enabling them to design better products to meet production builder needs. The team will develop a technical whitepaper and presentation on the performance and cost tradeoffs of various equipment types/systems at meeting the comfort requirements of low-load homes, and forecasting the market penetration and equipment needs for these low-load homes.

Home Innovation Research Labs, Inc. will study a new approach to roof insulation retrofits that can be installed in one step and result in semi-conditioned attics. Findings from this project could play a critical role in improving the efficiency of home heating and cooling, which typically account for 40% of a home's energy consumption.

This project entails the measurement of time-integrated concentrations and temporal profiles of humidity and established contaminants of concern in a minimum of 64 new homes located in cold and marine climate zones.

This project is part of a national study aimed at characterizing indoor air quality in occupied homes. The homes will be up to current energy codes, and researchers will closely monitor the use and performance of mechanical ventilation systems in those homes. Indoor and outdoor air will be sampled for formaldehyde, nitrogen oxides, carbon dioxide, and particulates as part of the indoor air quality characterization.

During BPA's 2016 Multifamily Technical Advisory Group, this technology was evaluated and recommended for future research. BPA is joining with NEEA and Ecotope to conduct a bench test to determine if this will be a viable alternative to conduct future field tests in the Pacific Northwest. The bench test will be document the system performance and noise levels to determine if the unit is ready for more lab and field tests.

This project will develop test procedures for alternative refrigerants for flammability and energy savings characterization and to develop a “favorability” index of end-use market segments and equipment types based on potential GHG savings impact and commercial feasibility and adoption.

The Better Buildings Residential Network connects energy efficiency programs and partners to share best practices and learn from one another to increase the number of homes that are energy efficient. Better Buildings Residential programs and partners have invested more than $3 billion from federal funding and local resources to build more energy-efficient communities across the United States. The U.S. Department of Energy (DOE) is continually expanding this network of residential energy efficiency programs and partners to new members.

The Fraunhofer Center for Sustainable Energy Systems will develop a plastic foam for use in U.S. buildings that is less expensive, mechanically stronger, and more environmentally friendly than current options. This foam will satisfy fire safety codes without the need for fire retardants and is easy to install.

The researchers developed long-term energy scenarios for California that comply with GHG emission targets and goals. The scenarios provide new insights about technology options and by when some of this options should be implemented.

Oak Ridge National Laboratory (ORNL) will work to address key issues in high performance HVAC and envelope systems by mitigating market uncertainty regarding the durability of high-performing envelope systems and validating and demonstrating advanced heating, ventilation, and air conditioning (HVAC) solutions for low-load homes. Improved technologies and systems can result in significant savings on monthly utility bills, reducing the payback period and offsetting the initial investment for the homeowner.

The University of Central Florida will demonstrate and validate energy-efficient residential ventilation and space conditioning systems. Advanced whole-house residential construction practices can achieve 50% energy savings compared to houses built to code in hot/humid climates.

The Building America Solution Center provides residential building professionals with access to expert information on hundreds of high-performance design and construction topics, including air sealing and insulation, HVAC components, windows, indoor air quality, and much more.

The Georgia Institute of Technology will support 20 student project teams in developing building energy efficiency technologies through a capstone design project. This effort will better prepare students for employment in the building energy efficiency sector. Additionally, the combined energy savings from these projects is estimated to add up to over 1.8 Quads per year.

The U.S. Department of Energy (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. The Building Science Education Guidelines are based on the collaborative efforts of DOE and its stakeholders to develop a framework for organizing core building science principles with key job classifications.

This project picks up on an ET project with long-term performance monitoring of a cold climate heat pump in Fairbanks, AK. In the United States, approximately 14.4 million dwellings use electricity for heating in cold and very cold regions, consuming 0.16 quads of energy annually. A high-performance cold climate heat pump (CCHP) can result in significant savings over current technologies (greater than 70% compared to strip heating) and in annual primary energy savings of 0.1 quads when fully deployed, which is equivalent to a reduction of 5.9 million tons of annual carbon dioxide emissions.
A case study will be created for submission to the Building America Solution Center that documents how the equipment performed during the field study, including estimated HSPF and SEER ratings for this type of technology in order to provide a reference for comparison to existing equipment.

The Window Covering Manufacturing Association will create the Attachments Energy Rating Council to develop an independent rating, certification, labeling, and performance verification program for window attachments. This program will help drive market penetration of energy-saving products and further innovation in the industry.

ClearStak will work with Heating Systems, LTD (Thermo-Control), a biomass-fired heating device manufacturer in Cobleskill, NY, to replace the existing controls on the Model 600 wood burner with non-proprietary components and software. This will be completed using their existing Intelligent Biomass Controller (IBC) to optimize combustion efficiency. The IBC allows for wireless connectivity, giving end-users access to remote monitoring capabilities, data reports, and alert notifications. Following the successful modifications to the system and the integration of the IBC, the entire system shall be tested using the Method 28WHH for Certification of Cord Wood-Fired Hydronic Heating Appliances With Partial Thermal Storage (Method 28 WHH-PTS) method at an EPA accredited testing laboratory. The project will be completed with UL testing and certification of the entire system, resulting in a commercial-ready product

Overall goal is to facilitate commercialization of this technology in the Pacific Northwest. This is a continuation of the previous and current work with the Sanden split system heat pump water heater (HPWH). Sanden will provide a UL listed version of its split system HPWH designed for marketing in the US with particular focus on the Pacific Northwest. This project will assess and report on the market readiness of this product after examining: 1) freeze protection strategy and operation for both power on (including circulation and heat tape) and power off; 2) tank port layout and threads from both water heating and combined space and water heating system perspectives; 3) electrical connections; 4) labeling; 5) documentation including user and installation manuals; 6) warranty and service provisions; 7) cost; 8) installation training materials and strategy; and 9) marketing and installation strategies.

NEEP conducted a market assessment of existing installer practices as well as existing guidance tools, protocols and resources specific to cold climates. Using the market assessment findings, NEEP developed ccashp design and installation guidance for trade contractors. The documents are developed to assist installers around sizing and selecting ASHPs for cold climate applications, while preserving high efficiency, performance, and customer satisfaction. HI Cat will cross-promote and link to the guidance.

The Washington State University (WSU) Energy Program, in partnership with Cowlitz PUD, Energy Trust of Oregon (ETO), Idaho Power, Inland Power and Light, Northwest energy Efficiency Alliance (NEEA), Pacific Gas and Electric, Pacific Northwest National Laboratory (PNNL), Puget Sound Energy (PSE), Mitsubishi Electric and Sanden International proposes to conduct research on two types of combined space and water heat pumps in field and controlled experiments in existing homes of various efficiencies and climates. One technology uses carbon dioxide (CO2) refrigerant and will be tested for performance at six field sites and at the PNNL lab homes for efficiency and demand response capability. The second technology uses a conventional refrigerant and combines ductless heat pump space heating and cooling technology with water heating and will be field tested at five locations in the region's hottest and coldest climates as well as in the marine coastal zone. Costs of system installation, monitoring and retrofit will be collected and analyzed.

This project takes a different approach to achieving white electroluminescence, which involves the use of a combination of fluorescent and phosphorescent emitters. These hybrid fluorescent/phosphorescent WOLEDs will give markedly improved cell efficacy and lifetime.

Maryland Energy and Sensor Technologies, LLC will develop a compact, high-efficiency thermoelastic cooling system. This next-generation HVAC technology will have low environmental impact and a small carbon footprint and could lead to substantial efficiency gains in building heating and cooling.

The project will focus on the performance of different attic assemblies and their associated heating, ventilating and air conditioning (HVAC) systems. Field measurements of attic and HVAC system performance will be conducted in two new high performance homes in California with sealed and insulated attics. One home will be built to be about 30 percent better than Title 24 and the other will be a ZNE home. The attic insulation approach will be a new lower-cost approach using blown insulation that does not use expensive spray-foam. The results of the measurements will be used directly to provide technical support for potential changes to Title 24 and provide information to contractors and builders on sealed and insulated attic performance and alternative approaches.

This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.

This project will develop and pilot-test a complete, low cost, and standards based Retail Automated Transactive Energy System (RATES), and behind the meter energy management solution, that minimizes the cost and complexity of customer participation in energy efficiency programs, while maximizing the potential of large numbers of small loads to improve system load factor, shave peaks, integrate renewable generation and otherwise provide low opportunity-cost resources to the grid.

Three different attic designs will be refined, tested, evaluated, and demonstrated in new home construction. The team will recommend the best of these approaches to home builders addressing cost-effectiveness and energy-efficiency. The baseline for comparison will be current energy efficiency code practices for attic construction involving ventilated, uninsulated attics containing code compliant ducts. The team will evaluate the new design approaches analytically at the start of the project. Researchers will assess approaches that include methods to produce sealed, insulated attics, as well as, standard vented attics, both of which have been demonstrated and are in limited use in the market today but currently add considerable cost to builders. The team will employ new and novel installation methods and materials that have the potential for energy savings on par with ducts in the conditioned space, but at a cost similar to current practice.

This project will develop and demonstrate an approach to scale residential retrofits for disadvantaged communities that will focus on customer-centric solutions. This project will develop and demonstrate an innovative approach, focusing on energy efficient retrofit packages that are non-intrusive to occupants and have the potential of reducing energy use by 30 to 40 percent.

This project will demonstrate how a large number of small electric loads, each impacted by and tuned to individual customer preferences can provide load management for both utilities and the California Independent System Operator (California ISO). The recipient will work with an extensive spectrum of leading product providers covering all major distributed energy resources (DERs), such as Nest (thermostats), ThinkEco (plug loads), Honda, BMW (auto), EGuana (smart Inverter) and Ice Energy (Thermal Storage). A variety of price signals will be tested for Time-of-Use customers such as Critical Peak Pricing and Demand Rate. The project will use deep analytics to evaluate individual customer preferences for demand management using microdata from devices and aggregate the responses to meet grid needs at different distribution and transmission levels.

This project is a controlled field study and lab test that assessed the demand response (DR) potential of split system and unitary heat pump water heaters (HPWHs) that use carbon dioxide (CO2) refrigerant. The researchers included Washington State University (WSU), Pacific Northwest National Laboratory (PNNL), Efficiency Solutions, and Ecotope working with Cascade Engineering Services.

Optimize heat pump water heater (HPWH) next generation project for both EE and DR. The major objectives of the project are:
1. Demonstrate and quantify the energy performance of the prototype GE Brillion GeoSpring Hybrid Water Heater with and without exhaust air ducting over heating and cooling conditions in the lab homes
2. Evaluate or quantify the potential for the GE smart grid-enabled HPWH to provide demand response (to both increase/absorb [INC] and decrease/shed/shift [DEC] load) under various price signals sent to the unit.

In addition, the proposed project will provide GE information to determine and design the optimal ducting configurations for their unit should they decide to offer this feature as an option for this new-to-the-market unit.

This project will demonstrate cost-competitive ZNE design strategies that combine occupant needs with technology solutions to create new pathways for residential ZNE communities. The project's goals are cost effectiveness for the customer, affordability, overcoming customer apprehension, establishing a track record of new technology for builders, enabling distribution grid integration, creating a planning process for ZNE communities, evaluating community solar and evaluating the impact of future changes to ZNE cost effectiveness. This project will also aim to understand the operation and energy use of the unregulated loads.

The University of Maryland will develop the next generation air-to-refrigerant heat exchangers using non-round tubes that are 25% smaller, 25% lighter and 30% reduced charge than state-of-the-art heat exchangers.

Pages