Air Sealing Duct and Flue Shafts

Last Updated: 03/06/2016

Scope

Air seal around all duct shafts and flues installed through ceilings, walls, or flooring to keep conditioned air from leaking into unconditioned space.

- To air seal around duct shafts, use caulk, canned foam, or rigid air barrier material cut to fit and caulked or foamed in place around the duct shafts.
- To air seal around combustion flues, use fire-rated caulk and UL-rated collars or sheet metal cut to fit and sealed with fire-rated caulk, while maintaining proper clearance between flue and combustible materials.
- Construct a sheet metal shield around combustion flues to maintain 3 inches of clearance between the flue and attic insulation. Make the shield 4 inches higher than the expected insulation height.

See the Compliance Tab for related codes and standards requirements, and criteria to meet national programs such as DOE's Zero Energy Ready Home program, ENERGY STAR Certified Homes, and Indoor airPLUS.
Description

Install air barriers around duct and flue shafts in the attic floor to prevent air leakage between the living space and the attic and to allow full insulation levels to be installed around the duct or flue. Air barrier material around duct shafts can include thin sheet goods such as rigid insulation, dry wall, OSB, or plywood. Air barriers around flue shafts should be made of a heat-resistant material such as sheet metal. These materials may be installed by insulators, framers, or drywallers. This task should be included in the contract for the appropriate trade depending on the workflow at specific job sites.

Air barrier effectiveness is measured at the whole-house level. High-performance branding programs and the IECC code require that builders meet specified infiltration rates at the whole-house level. See the “compliance” tab for these specified infiltration rates.

How to Seal a Rigid Duct Chase

1. Install wood framing cross pieces in the attic rafter bays on each side of the duct chase, if needed.

![Install wood framing cross pieces in the attic rafter bays on each side of the duct chase](image)

2. Seal all wood framing joints surrounding the chase with sealant. Lay a generous continuous bead of sealant along the top edge of the chase framing.

![Apply a continuous bead of sealant](image)

3. Measure and cut the air-blocking material (plywood, rigid foam, or drywall) to fit around the duct. Place the blocking material on the framing leaving a 1/4-in. gap between the rigid duct and the material. Fasten the material in place with nails or screws. Seal the material to the duct with sealant. Also seal any joints in the blocking material. Cover the material with insulation to the specified attic insulation depth.
How to Air Seal a Flex Duct Chase

1. Install wood framing cross pieces in the attic rafter bays on each side of the duct chase, if needed.

2. Seal all wood framing joints surrounding the chase with sealant. Lay a generous continuous bead of sealant along the top edge of the chase framing.
3. Measure and cut the air-blocking material (plywood, rigid foam, or drywall) to fit around the duct. Cut the material into two halves and then cut half circles in each to encompass the flex duct. Place the blocking material on the framing and in contact with the duct. Fasten the material with nails or screws. Seal the blocking material to the duct with sealant. Also seal the joints in the blocking material. Cover the blocking material with insulation to the required levels.

How to Air Seal a Metal Chimney or Flue Vent Pipe – Option 1 – Air Seal at the Bottom of the Framing

1. Cut two pieces of sheet metal to cover the chase opening. Allow 1 inch of overlap. Fasten the sheet metal to the framing and seal all edges and seams with fire-rated caulk.
Cut sheet metal to cover the chase opening. Fasten sheet metal to framing and seal edges with fire-rated caulk.

2. Use sheet metal to make a shield that will wrap around the pipe with a 3-inch clearance. Fold in the tabs at the top and every other tab at the bottom to maintain a 3-inch clearance. With tabs folded, the shield should be 4 inches taller than the finished insulation level. Seal the edges together with fire-rated caulk.

3. Cover the shield with insulation to the required height. The insulation should cover the rafters.
Fill area around shield with insulation

How to Air Seal a Metal Chimney or Flue Vent Pipe – Option 2 – Air Seal at the Top of the Framing

1. Cut two pieces of framing lumber equal in height to the ceiling joists. Fasten wood cross pieces to joists keeping at least 3 inches of clearance to the pipe. Caulk this wood blocking to the framing.

2. Cut two pieces of sheet metal or aluminum flashing to fit around the chimney pipe with 1 inch of overlap. Fasten the sheet
metal to the framing and seal all edges and seams with fire-rated caulk.

3. Use sheet metal to make a shield that will wrap around the pipe with a 3-inch clearance. Fold in tabs at the top and every other tab at the bottom to maintain a 3-inch clearance. With tabs folded, the shield should be 4 inches taller than finished insulation level. Seal the edges together with fire-rated caulk.

4. Cover the shield with insulation to the required height.
How to Seal a Duct Boot to the Ceiling

1. Seal all sides of the duct boot to the gypsum board with spray foam or caulk. Apply mastic or metal tape to all duct seams and joints.

2. Add insulation to the specified attic insulation depth.
Caulk with a continuous bead of sealant

Caulk air seals the boot to the ceiling
Ensuring Success

Blower door testing, which is conducted as part of the whole-house energy performance test-out, may help indicate whether duct and flue openings to unconditioned space (such as an attic) have been successfully sealed. An infrared camera can be used in conjunction with the blower door testing to detect air leakage and heat loss at the duct and flue shaft openings, if a sufficient temperature difference exists between the unconditioned and the conditioned space of the house. An experienced technician can also check for air leaks beneath the knee walls with a smoke pencil or by feeling with the back of the hand.
Climate

No climate specific information applies.
Training

Right and Wrong Images

Display Image: ES_TESRC_5.1.1_PG128_229b_102811_0.jpg
CAD FILE: 511_CAD_4-3_flue_shaft_at_chase_wall_plan_view_5-01031_GBA_1-31-12.dwg
PDF: 511_CAD_4-3_flue_shaft_at_chase_wall_plan_view_5-01031_GBA-1-31-12.pdf

CAD FILE: 511_CAD_4-1_sealed_duct_shaft_5-01033_GBA_1-31-12.dwg
PDF: 511_CAD_4-1_sealed_duct_shaft_5-01033_GBA-1-31-12.pdf
Compliance

The Compliance tab contains both program and code information. Code language is excerpted and summarized below. For exact code language, refer to the applicable code, which may require purchase from the publisher. While we continually update our database, links may have changed since posting. Please contact our webmaster if you find broken links.

ENERGY STAR Certified Homes, Version 3/3.1 (Rev. 09)

National Rater Field Checklist

Thermal Enclosure System.

4. Air Sealing (Unless otherwise noted below, “sealed” indicates the use of caulk, foam, or equivalent material).

4.1 Ducts, flues, shafts, plumbing, piping, wiring, exhaust fans, & other penetrations to unconditioned space sealed, with blocking / flashing as needed.

Please see the ENERGY STAR Certified Homes Implementation Timeline for the program version and revision currently applicable in your state.

DOE Zero Energy Ready Home (Revision 07)

Exhibit 1 Mandatory Requirements.

Exhibit 1, Item 1) Certified under the ENERGY STAR Qualified Homes Program or the ENERGY STAR Multifamily New Construction Program.

2009 IECC

Section 402.4.1. The building thermal envelope shall be durably sealed to limit infiltration...including all joints, seams, and penetrations.

2012 IECC, 2015 IECC, and 2018 IECC

Table R402.4.1.1 Air Barrier and Insulation Installation, Shafts/penetrations: Duct shafts, utility penetrations, and flue shafts opening to exterior or unconditioned space are air sealed.

Section R101.4.3 (Section R501.1.1 in 2015 and 2018 IECC). Additions, alterations, renovations, or repairs shall conform to the provisions of this code, without requiring the unaltered portions of the existing building to comply with this code. (See code for additional requirements and exceptions.)

2009 IRC

Section N1102.4.1 Building thermal envelope. Joints (including rim joist junctions), attic access openings, penetrations, and all other such openings in the building envelope that are sources of air leakage are sealed with caulk, gasketed, weatherstripped or otherwise sealed with an air barrier material, suitable film or solid material.

2012 IRC, 2015 IRC, and 2018 IRC

Table N1102.4.1.1 Shafts, Penetrations: Air Barrier and Insulation Installation, Shafts/penetrations: Duct shafts, utility penetrations, and flue shafts opening to exterior or unconditioned space are air sealed. General Requirements: Air barrier and thermal barrier: A continuous air barrier is installed in the building envelope including rim joists and exposed edges of insulation. Breaks or joints in the air barrier are sealed. Air permeable insulation is not used as a sealing material.

Section N1101.3 (Section N1107.1.1 in 2015 and 2018 IRC). Additions, alterations, renovations, or repairs shall conform to the provisions of this code, without requiring the unaltered portions of the existing building to comply with this code. (See code for additional requirements and exceptions.)

Appendix J regulates the repair, renovation, alteration, and reconstruction of existing buildings and is intended to encourage their continued safe use.
More Info.

Access to some references may require purchase from the publisher. While we continually update our database, links may have changed since posting. Please contact our webmaster if you find broken links.

Case Studies

1. **New Whole-House Solutions Case Study: Attention to Detail in High-Performance Homes 2012, Heritage Buildings, Leland NC**
 - **Author(s):** PNNL
 - **Organization(s):** PNNL
 - **Publication Date:** October, 2012
 - Case study about one builder’s conversion to high-performance building in the hot-humid regions of the Atlantic seaboard.

2. **New Whole-House Solutions Case Study: Tommy Williams Homes: Longleaf Village & Belmont, Gainesville, FL**
 - **Author(s):** PNNL
 - **Organization(s):** PNNL
 - **Publication Date:** April, 2012
 - Case study about a production builder that achieves HERS scores of 60, compared to 85 for other builders that build new homes to Florida code.

References and Resources*

1. **2009 IECC - International Energy Conservation Code**
 - **Author(s):** International Code Council
 - **Organization(s):** ICC
 - **Publication Date:** January, 2009
 - Code establishing a baseline for energy efficiency by setting performance standards for the building envelope (defined as the boundary that separates heated/cooled air from unconditioned, outside air), mechanical systems, lighting systems and service water heating systems in homes and commercial businesses.

2. **2009 IRC - International Residential Code for One and Two Family Dwellings**
 - **Author(s):** International Code Council
 - **Organization(s):** ICC
 - **Publication Date:** January, 2009
 - Code for residential buildings that creates minimum regulations for one- and two-family dwellings of three stories or less. It brings together all building, plumbing, mechanical, fuel gas, energy and electrical provisions for one- and two-family residences.

 - **Author(s):** International Code Council
 - **Organization(s):** ICC
 - **Publication Date:** January, 2012
 - Code establishing a baseline for energy efficiency by setting performance standards for the building envelope (defined as the boundary that separates heated/cooled air from unconditioned, outside air), mechanical systems, lighting systems and service water heating systems in homes and commercial businesses.

4. **2012 IRC - International Residential Code for One and Two Family Dwellings**
 - **Author(s):** International Code Council
 - **Organization(s):** ICC
 - **Publication Date:** January, 2012
 - Code for residential buildings that creates minimum regulations for one- and two-family dwellings of three stories or less. It brings together all building, plumbing, mechanical, fuel gas, energy and electrical provisions for one- and two-family residences.

5.
2015 IECC - International Energy Conservation Code
Author(s): International Code Council
Organization(s): ICC
Publication Date: May, 2014
Code establishing a baseline for energy efficiency by setting performance standards for the building envelope (defined as the boundary that separates heated/cooled air from unconditioned, outside air), mechanical systems, lighting systems and service water heating systems in homes and commercial businesses.

6. **2015 IRC - International Residential Code for One and Two Family Dwellings**
Author(s): International Code Council
Organization(s): ICC
Publication Date: May, 2014
Code for residential buildings that creates minimum regulations for one- and two-family dwellings of three stories or less. It brings together all building, plumbing, mechanical, fuel gas, energy and electrical provisions for one- and two-family residences.

Author(s): International Code Council
Organization(s): ICC
Publication Date: November, 2017
Code establishing a baseline for energy efficiency by setting performance standards for the building envelope (defined as the boundary that separates heated/cooled air from unconditioned, outside air), mechanical systems, lighting systems, and service water heating systems in homes and commercial businesses.

8. **2018 IRC - International Residential Code for One and Two Family Dwellings**
Author(s): International Code Council
Organization(s): ICC
Publication Date: August, 2017
Code for residential buildings that creates minimum regulations for one- and two-family dwellings of three stories or less. It brings together all building, plumbing, mechanical, fuel gas, energy and electrical provisions for one- and two-family residences.

9. **DOE Zero Energy Ready Home National Program Requirements (Rev. 07)**
Author(s): U.S. Department of Energy
Organization(s): DOE
Publication Date: May, 2019
Standard requirements for DOE’s Zero Energy Ready Home national program certification.

10. **ENERGY STAR Certified Homes, Version 3/3.1 (Rev. 09) National Program Requirements**
Author(s): U.S. Environmental Protection Agency
Organization(s): EPA
Publication Date: September, 2018
Webpage with links to documents providing the program requirements and checklists for ENERGY STAR Certified Homes (Ver. 3/3.1, Rev. 09).

11. **Guide to Attic Air Sealing**
Author(s): Lstiburek
Organization(s): Building Science Corporation
Publication Date: January, 2010
Fact sheet providing detailed information about air sealing attics.

12. **Thermal Enclosure System Rater Checklist Guidebook**
Author(s): U.S. Environmental Protection Agency
Organization(s): EPA
Publication Date: October, 2011
Guide describing details that serve as a visual reference for each of the line items in the Thermal Enclosure System Rater Checklist.

Publication dates are shown for formal documents. Dates are not shown for non-dated media. Access dates for referenced, non-dated media, such as web sites, are shown in the measure guide text.

Contributors to this Guide
The following authors and organizations contributed to the content in this Guide.
Pacific Northwest National Laboratory

Building Science Corporation, lead for the Building Science Consortium (BSC), a DOE Building America Research Team